login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 - p^(1 - s) + p^(-s)).
3

%I #31 Feb 26 2023 06:32:45

%S 1,2,2,4,2,4,2,8,5,4,2,8,2,4,4,16,2,10,2,8,4,4,2,16,7,4,14,8,2,8,2,32,

%T 4,4,4,20,2,4,4,16,2,8,2,8,10,4,2,32,9,14,4,8,2,28,4,16,4,4,2,16,2,4,

%U 10,64,4,8,2,8,4,8,2,40,2,4,14,8,4,8,2,32,41,4,2,16,4

%N Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 - p^(1 - s) + p^(-s)).

%C Inverse Moebius transform of A003557.

%C Dirichlet convolution of A000203 with A097945.

%H Vaclav Kotesovec, <a href="/A326306/b326306.txt">Table of n, a(n) for n = 1..10000</a>

%H S. R. Finch, <a href="https://arxiv.org/abs/math/0605019">Idempotents and Nilpotents Modulo n</a>, arXiv:math/0605019 [math.NT], 2006-2017.

%F G.f.: Sum_{k>=1} (k / rad(k)) * x^k / (1 - x^k), where rad = A007947.

%F a(n) = Sum_{d|n} A003557(d).

%F a(n) = Sum_{d|n} mu(n/d) * phi(n/d) * sigma(d), where mu = A008683, phi = A000010 and sigma = A000203.

%F a(p) = 2, where p is prime.

%F From _Vaclav Kotesovec_, Jun 20 2020: (Start)

%F Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + 1/(p^s - p)).

%F Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) + p^(-s)). (End)

%F Multiplicative with a(p^e) = 1 + (p^e-1)/(p-1). - _Amiram Eldar_, Oct 14 2020

%F From _Richard L. Ollerton_, May 07 2021: (Start)

%F a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*sigma(gcd(n,k)).

%F a(n) = Sum_{k=1..n} mu(gcd(n,k))*sigma(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

%t Table[Sum[d/Last[Select[Divisors[d], SquareFreeQ]], {d, Divisors[n]}], {n, 1, 85}]

%t Table[Sum[MoebiusMu[n/d] EulerPhi[n/d] DivisorSigma[1, d], {d, Divisors[n]}], {n, 1, 85}]

%t f[p_, e_] := 1 + (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Oct 14 2020 *)

%o (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X)/(1 - X)/(1 - p*X))[n], ", ")) \\ _Vaclav Kotesovec_, Jun 14 2020

%Y Cf. A000010, A000079 (fixed points), A000203, A003557, A007947, A008683, A098108 (parity of a(n)), A191750, A300717, A335032.

%K nonn,mult,easy

%O 1,2

%A _Ilya Gutkovskiy_, Oct 17 2019