%I #13 Jun 11 2024 15:37:41
%S 1,2,4,128,12352,3826272,3775441536
%N Number of labeled n-vertex digraphs (with loops) not containing a (directed) Hamiltonian path.
%C A path is Hamiltonian if it passes through every vertex exactly once.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hamiltonian_path">Hamiltonian path</a>
%H Gus Wiseman, <a href="http://arxiv.org/abs/0709.0430">Enumeration of paths and cycles and e-coefficients of incomparability graphs</a>, arXiv:0709.0430 [math.CO], 2007.
%F A002416(n) = a(n) + A326214(n).
%t Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,0,3}] (* Mathematica 10.2+ *)
%Y The unlabeled case is A326224.
%Y The case without loops is A326216.
%Y Digraphs containing a Hamiltonian path are A326214.
%Y Digraphs not containing a Hamiltonian cycle are A326220.
%Y Cf. A000595, A002416, A003024, A003216, A057864, A283420, A326204, A326206, A326221.
%K nonn,more
%O 0,2
%A _Gus Wiseman_, Jun 15 2019
%E a(5)-a(6) from _Bert Dobbelaere_, Jun 11 2024