Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 24 2019 11:57:01
%S 0,1,1,2,1,2,1,3,2,2,1,3,1,2,2,4,1,3,1,3,4,2,1,4,2,2,4,3,1,3,1,5,4,2,
%T 2,4,1,2,3,4,1,5,1,3,7,2,1,5,2,3,4,3,1,5,4,4,6,2,1,4,1,2,6,6,3,5,1,3,
%U 6,3,1,5,1,2,4,3,2,4,1,5,8,2,1,6,4,2,4,4,1,8,4,3,9,2,3,6,1,3,6,4,1,5,1,4,7
%N Number of distinct nonnegative integers that are reachable from n with some nonempty combination of transitions x -> A032742(x) and x -> A302042(x).
%C Number of distinct numbers > 1 in the directed acyclic graph formed by edge relations x -> A032742(x) and x -> A302042(x), where n is the unique root of the graph.
%H Antti Karttunen, <a href="/A326189/b326189.txt">Table of n, a(n) for n = 1..65537</a>
%F a(p) = 1 for all primes p.
%F a(n) >= A326191(n) >= max(A001222(n),A253557(n)) >= min(A001222(n),A253557(n)) >= A326190(n).
%e The directed acyclic graph whose unique root is 153 (illustrated below), spans the following seven numbers [1, 5, 17, 25, 51, 75, 153], as A032742(153) = 51, A302042(153) = 75, A032742(51) = 17, A302042(51) = 25, A032742(75) = 25, A302042(75) = 15, A032742(25) = A302042(25) = 5, and A032742(17) = A302042(17) = A032742(5) = A302042(5) = 1. We exclude the root 153 from the count of numbers that are reached, thus a(153) = 6. (Equally, we can include 153, but exclude 1).
%e .
%e 153
%e / \
%e / \
%e 51 75
%e / \ / \
%e / 17 \
%e \ | /
%e \ 1 /
%e \ /
%e \ /
%e 25
%e |
%e 5
%e |
%e 1
%o (PARI)
%o up_to = 65537;
%o ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
%o A032742(n) = (n/A020639(n));
%o v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
%o A078898(n) = v078898[n];
%o A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
%o A326189aux(n,distvals) = if(1==n,distvals,my(newdistvals=setunion([n],distvals),a=A032742(n), b=A302042(n)); newdistvals = A326189aux(a,newdistvals); if(a==b,newdistvals, A326189aux(b,newdistvals)));
%o A326189(n) = length(A326189aux(n,Set([])));
%Y Cf. A001222, A032742, A253557, A302042, A323888, A326075, A326139, A326190, A326191.
%Y Cf. also A326196.
%K nonn
%O 1,4
%A _Antti Karttunen_, Aug 23 2019