Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 10 2023 17:51:01
%S 15,91,207,703,847,1023,1891,2701,2725,5551,12403,15043,18721,19359,
%T 38503,49141,79003,88831,104653,146611,148951,188191,218791,226801,
%U 269011,286903,346957,385003,497503,597871,665281,721801,736291,765703,873181,954271,1056331,1207359,1314631,1345873,1373653,1537381,1755001
%N Odd numbers > 1, not powers of primes, for which A326147(n) is equal to abs(A326146(n)).
%C Odd numbers > 1, not powers of primes, for which A326146(n) [= (sigma(n)-A020639(n)-n)] is not zero and divides n-A020639(n).
%C Question: Are any of these terms present also in A326064 and A326074? None of the first 519 terms are. If such intersections are empty, then there are no odd perfect numbers.
%C Of the first 519 terms, 485 are semiprimes.
%H Antti Karttunen, <a href="/A326148/b326148.txt">Table of n, a(n) for n = 1..519; all terms < 2^31</a>
%H <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a>
%o (PARI)
%o A020639(n) = if(1==n, n, factor(n)[1, 1]);
%o A326146(n) = (sigma(n)-A020639(n)-n);
%o A326147(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n);
%o isA326148(n) = if((n>1)&&(n%2)&&!isprimepower(n), my(s=factor(n)[1, 1], t=n-s, u=sigma(n)-s-n); (u && !(t%u)), 0);
%Y Cf. A020639, A046666, A326064, A326074, A326146, A326147.
%K nonn
%O 1,1
%A _Antti Karttunen_, Jun 10 2019