login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n, and sigma is the sum of divisors of n.
4

%I #8 Jun 12 2019 19:14:34

%S 1,1,2,1,4,4,6,1,1,2,10,2,12,4,6,1,16,1,18,2,2,4,22,2,1,2,2,26,28,4,

%T 30,1,6,2,2,1,36,4,2,2,40,4,42,2,6,4,46,2,1,1,6,2,52,4,2,2,2,2,58,2,

%U 60,4,2,1,2,4,66,2,6,4,70,1,72,2,2,2,2,4,78,26,1,2,82,2,2,4,6,2,88,2,14,2,2,4,10,2,96,1,6,1,100,4,102,2,6

%N a(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n, and sigma is the sum of divisors of n.

%H Antti Karttunen, <a href="/A326147/b326147.txt">Table of n, a(n) for n = 1..20000</a>

%F a(n) = gcd(n-A020639(n), A000203(n)-A020639(n)-n).

%F For n > 1, a(n) = gcd(A046666(n), A326146(n)).

%o (PARI)

%o A020639(n) = if(1==n, n, factor(n)[1, 1]);

%o A326147(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n);

%Y Cf. A000203, A020639, A046666, A326146, A326148.

%Y Cf. also A009194, A325385, A325813, A325975, A326046, A326047, A326048, A326056, A326057, A326060, A326062, A326073, A326129, A326130, A326140, A326144.

%K nonn

%O 1,3

%A _Antti Karttunen_, Jun 10 2019