login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive numbers n for which A000120(n) = k*A294898(n), with k < 0; numbers for which A326130(n) = sigma(n) - A005187(n).
6

%I #35 Jan 03 2021 02:54:58

%S 6,28,110,496,884,8128,18632,85936,116624,15370304,33550336,73995392,

%T 815634435,3915380170,5556840416,6800695312,8589869056

%N Positive numbers n for which A000120(n) = k*A294898(n), with k < 0; numbers for which A326130(n) = sigma(n) - A005187(n).

%C No further terms below 2^31.

%C See also comments in A326133.

%C The quotients A000120(k)/(sigma(k)-A005187(k)) for these terms are: 1, 1, 5, 1, 3, 1, 5, 9, 2, 2, 1, 2, 2. Ones occur at the positions of perfect numbers.

%C a(18) > 10^11. - _Amiram Eldar_, Jan 03 2021

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%e 110 is "1101110" in binary, thus A000120(110) = 5. Sigma(110) = 216, while A005187(110) = 215, thus as 5 = 5*(216-215), 110 is included in this sequence.

%t q[n_] := Module[{bw = DigitCount[n, 2, 1], ab = DivisorSigma[1, n] - 2*n, sum}, (sum = ab + bw) > 0 && Divisible[bw, sum]]; Select[Range[10^5], q] (* _Amiram Eldar_, Jan 03 2021 *)

%o (PARI)

%o A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };

%o isA326131(n) = { my(t=sigma(n)-A005187(n)); (gcd(hammingweight(n), t) == t); };

%Y Intersection of A326132 and A326133, also of A326132 and A326138.

%Y Cf. A000120, A000396 (subsequence), A005187, A294898, A295296, A295297, A295298, A295299, A326130.

%Y Cf. also A325981, A326141.

%K nonn,more

%O 1,1

%A _Antti Karttunen_, Jun 09 2019

%E a(14)-a(17) from _Amiram Eldar_, Jan 03 2021