Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 27 2020 03:05:38
%S 0,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,3,3,1,1,1,1,3,1,2,1,3,1,1,2,
%T 3,1,3,1,1,3,6,1,3,1,2,1,1,1,3,1,6,1,5,1,2,2,2,4,3,1,9,1,1,3,1,1,4,1,
%U 4,2,6,1,6,1,3,7,4,2,5,1,10,1,3,1,9,3
%N Number of strict integer partitions of n whose mean and geometric mean are both integers.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a>
%e The a(55) = 2 through a(60) = 9 partitions:
%e (55) (56) (57) (58) (59) (60)
%e (27,16,9,2,1) (24,18,8,6) (49,7,1) (49,9) (54,6)
%e (27,25,5) (50,8) (48,12)
%e (27,18,12) (27,24,9)
%e (27,24,6,2,1)
%e (36,12,9,2,1)
%e (36,9,6,4,3,2)
%e (24,18,9,6,2,1)
%e (27,16,9,4,3,1)
%t Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]
%Y Partitions with integer mean and geometric mean are A326641.
%Y Strict partitions with integer mean are A102627.
%Y Strict partitions with integer geometric mean are A326625.
%Y Non-constant partitions with integer mean and geometric mean are A326641.
%Y Subsets with integer mean and geometric mean are A326643.
%Y Heinz numbers of partitions with integer mean and geometric mean are A326645.
%Y Cf. A051293, A067538, A067539, A078175, A082553, A316413, A326027, A326623, A326644, A326646, A326647.
%K nonn
%O 0,11
%A _Gus Wiseman_, Jul 16 2019
%E More terms from _Jinyuan Wang_, Jun 26 2020