login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of factorizations of n into factors > 1 with integer geometric mean.
26

%I #15 Nov 10 2024 21:47:48

%S 0,1,1,2,1,1,1,2,2,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,1,

%T 1,5,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2

%N Number of factorizations of n into factors > 1 with integer geometric mean.

%C First differs from A294336 and A316782 at a(36) = 5.

%H Antti Karttunen, <a href="/A326028/b326028.txt">Table of n, a(n) for n = 1..100000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%F a(2^n) = A067538(n).

%e The a(4) = 2 through a(36) = 5 factorizations (showing only the cases where n is a perfect power).

%e (4) (8) (9) (16) (25) (27) (32) (36)

%e (2*2) (2*2*2) (3*3) (2*8) (5*5) (3*3*3) (2*2*2*2*2) (4*9)

%e (4*4) (6*6)

%e (2*2*2*2) (2*18)

%e (3*12)

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t Table[Length[Select[facs[n],IntegerQ[GeometricMean[#]]&]],{n,2,100}]

%o (PARI) A326028(n, m=n, facmul=1, facnum=0) = if(1==n,facnum>0 && ispower(facmul,facnum), my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A326028(n/d, d, facmul*d, facnum+1))); (s)); \\ _Antti Karttunen_, Nov 10 2024

%Y Positions of terms > 1 are the perfect powers A001597.

%Y Partitions with integer geometric mean are A067539.

%Y Subsets with integer geometric mean are A326027.

%Y Factorizations with integer average and geometric mean are A326647.

%Y Cf. A001055, A082553, A322794, A326514, A326515, A326516, A326622, A326623, A326624, A326625.

%K nonn

%O 1,4

%A _Gus Wiseman_, Jul 15 2019

%E a(89) onwards from _Antti Karttunen_, Nov 10 2024