login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * (x + x^n)^n.
3

%I #11 Jul 06 2019 09:32:29

%S 1,6,6,22,21,51,28,126,45,170,156,246,91,627,120,496,588,876,190,1626,

%T 231,1776,1536,1392,325,4977,798,2086,3405,5025,496,8694,561,8122,

%U 6636,4086,3881,21597,780,5440,11781,26016,946,24114,1035,28001,33348,8976,1225,70302,2586,36946,30501,56127,1540,66318,46698,82056,45660,16710,1891,268242,2016,20032,79806,140106,122398,171738,2415,180835,92256,249612,2701,482532,2850,32566

%N G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * (x + x^n)^n.

%C More generally, the following sums are equal:

%C (1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,

%C (2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - p*q^n*r)^(n+k),

%C for any fixed integer k; here, k = 3 and q = x, p = x, r = 1.

%F G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * (x + x^n)^n.

%F G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^(n^2) / (1 - x^(n+1))^(n+3).

%e G.f.: A(x) = 1 + 6*x + 6*x^2 + 22*x^3 + 21*x^4 + 51*x^5 + 28*x^6 + 126*x^7 + 45*x^8 + 170*x^9 + 156*x^10 + 246*x^11 + 91*x^12 + 627*x^13 + 120*x^14 +...

%e where

%e A(x) = 1 + 3*(x + x) + 6*(x + x^2)^2 + 10*(x + x^3)^3 + 15*(x + x^4)^4 + 21*(x + x^5)^5 + 28*(x + x^6)^6 + 36*(x + x^7)^7 + 45*(x + x^8)^8 + 55*(x + x^9)^9 + ...

%e Also

%e A(x) = 1/(1-x)^3 + 3*x/(1 - x^2)^4 + 6*x^4/(1 - x^3)^5 + 10*x^9/(1 - x^4)^6 + 15*x^16/(1 - x^5)^7 + 21*x^25/(1 - x^6)^8 + 28*x^36/(1 - x^7)^9 + 36*x^49/(1 - x^8)^10 + 45*x^64/(1 - x^9)^11 + 55*x^81/(1 - x^10)^12 + ...

%o (PARI) {a(n)=polcoeff(sum(m=0, n, (m+1)*(m+2)/2 * (x + x^m +x*O(x^n))^m), n)}

%o for(n=0, 100, print1(a(n), ", "))

%o (PARI) {a(n)=polcoeff(sum(m=0, n, (m+1)*(m+2)/2 * x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+3)), n)}

%o for(n=0, 100, print1(a(n), ", "))

%Y Cf. A217669, A325997, A325999.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jun 02 2019