login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices k of Gram points g(k) for successive negative maximal values of the Riemann zeta function on the critical line.
5

%I #66 Sep 29 2019 10:53:23

%S 126,211,288,377,703,869,964,1933,1935,2675,3970,4265,4657,5225,6618,

%T 8374,8569,18014,25461,28812,36719,50512,74399,83452,90051,103715,

%U 146919,164189,185011,206716

%N Indices k of Gram points g(k) for successive negative maximal values of the Riemann zeta function on the critical line.

%C This sequence is subset of A114856.

%C The n-th Gram point occurs when the Riemann-Siegel theta function is equal to Pi*n.

%C Gram points occur when the imaginary part of the Riemann zeta function on the critical line is zero but the real part is nonzero.

%C For very small values of Riemann zeta function at Gram points, the distance to the nearest zero of Riemann zeta function is very small.

%C For indices of successive positive minima of the Riemann zeta function at Gram points g(n) see A326890.

%C For indices of successive positive maxima of the Riemann zeta function at Gram points g(n) see A327543.

%C Computed record value of this sequence is a(n)=2601005843707 with value zeta[1/2+I*g(a(n))]= -119.630432107724 (Kotnik 2003).

%H T. Kotnik, <a href="https://doi.org/10.1090/S0025-5718-03-01568-0">Computational estimation of the order of zeta(1/2+it)</a>, Math. Comp. 73 (2004), 949-956.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GramPoint.html">Gram Point</a>.

%e n | a(n) | Zeta[1/2+I*g(a(n))] | g(a(n))

%e -=---+--------+----------------------+------------

%e 1 | 126 | -0.02762949885719994 | 282.4547208

%e 2 | 211 | -0.38288957164454790 | 415.6014600

%e 3 | 288 | -0.66545881605404208 | 527.6973416

%e 4 | 377 | -0.83760106086093435 | 650.8910448

%e 5 | 703 | -1.00455040613260376 | 1068.189532

%e 6 | 869 | -1.27120822682165464 | 1267.847910

%e 7 | 964 | -1.392200186869156 | 1379.419269

%e 8 | 1933 | -1.413878403700959 | 2446.574386

%e 9 | 1935 | -1.881639907182627 | 2448.681071

%e 10 | 2675 | -2.062586314581326 | 3210.042865

%e 11 | 3970 | -2.1482691132271 | 4479.035743

%e 12 | 4265 | -2.1659698746279 | 4759.875045

%e 13 | 4657 | -2.2554659693900 | 5129.256083

%e 14 | 5225 | -2.4955901590107 | 5657.609720

%e 15 | 6618 | -2.60670539564937 | 6924.738490

%e 16 | 8374 | -2.95430731615046 | 8476.646123

%t ff = 0; aa = {}; Do[kk = Re[Zeta[1/2 + I N[InverseFunction[RiemannSiegelTheta][n Pi], 10]]];

%t If[kk < ff, AppendTo[aa, n]; ff = kk], {n, 1, 450000}]; aa

%Y Cf. A114856, A254297, A255739, A255742, A325932, A326502, A326890, A326891, A327543.

%K nonn

%O 1,1

%A _Artur Jasinski_, Sep 16 2019