login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Motzkin excursions of length n with an even number of humps and without peaks.
0

%I #12 Jun 15 2019 02:53:59

%S 1,1,1,1,1,1,2,6,19,57,161,433,1122,2826,6968,16916,40630,96958,

%T 230732,549278,1311473,3146659,7596281,18460921,45163078,111164142,

%U 275067208,683577528,1704485046,4260677154,10669252349

%N Number of Motzkin excursions of length n with an even number of humps and without peaks.

%C A Motzkin excursion is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), never goes below the x-axis, and terminates at the altitude 0.

%C A peak is an occurrence of the pattern UD.

%C A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).

%H Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/patterns2019.pdf">Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata</a>, Algorithmica (2019).

%H Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, <a href="https://doi.org/10.4230/LIPIcs.AofA.2018.10">Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Asymptotic Aspects and Borges's Theorem</a>, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018).

%F G.f.: (1/4)*(t^3 - 2*t^2 + 2*t - 1 + sqrt(t^6 - 4*t^5 + 4*t^4 - 2*t^3 + 4*t^2 - 4*t + 1))/((t^2-t)*t)+(1/4)*(-t^3 - 2*t^2 - 1 + sqrt(t^6 + 4*t^5 - 4*t^4 + 2*t^3 + 4*t^2 - 4*t + 1) + 2*t)/((t^2-t)*t).

%e For n=0..5 we have a(n)=1 because for these values we have only the humpless paths HH...H. For n=6, the only "extra" path is UHDUHD. For n=7, the five "extra" paths are UHDUHHD, UHHDUHD, HUHDUHD, UHDHUHD, UHDUHDH.

%t CoefficientList[Series[(1/4)*(x^3 - 2*x^2 + 2*x - 1 + Sqrt[x^6 - 4*x^5 + 4*x^4 - 2*x^3 + 4*x^2 - 4*x + 1])/((x^2-x)*x)+(1/4)*(-x^3 - 2*x^2 - 1 + Sqrt[x^6 + 4*x^5 - 4*x^4 + 2*x^3 + 4*x^2 - 4*x + 1] + 2*x)/((x^2-x)*x), {x, 0, 40}], x] (* _Vaclav Kotesovec_, Jun 05 2019 *)

%K nonn

%O 0,7

%A _Andrei Asinowski_, May 28 2019