login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325890
Number of colored set partitions of [n] where colors of the elements of subsets are in (weakly) increasing order and exactly two colors are used.
2
3, 20, 122, 774, 5247, 38198, 298139, 2485690, 22045130, 207125874, 2053771931, 21416863948, 234145149539, 2676207794512, 31898152797430, 395584489687982, 5093960430643323, 67985187315217290, 938835976835478467, 13394336734762313862, 197153821757472332126
OFFSET
2,1
LINKS
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*
binomial(n-1, j-1)*binomial(k+j-1, j), j=1..n))
end:
a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2):
seq(a(n), n=2..25);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k + j - 1, j], {j, 1, n}]];
a[n_] := With[{k = 2}, Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]];
a /@ Range[2, 25] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A321296.
Sequence in context: A228066 A009125 A037795 * A323563 A228750 A187442
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 07 2019
STATUS
approved