login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes represented by non-quadratic cyclotomic binary forms.
1

%I #17 Apr 06 2024 14:59:17

%S 11,13,17,31,43,61,73,97,127,151,181,193,211,241,257,331,337,421,461,

%T 463,521,541,547,577,601,641,683,757,881,991,1009,1021,1031,1093,1297,

%U 1621,1801,1871,1873,1933,2221,2417,2657,2731,2801,3001,3121,3361,3571,3697

%N Primes represented by non-quadratic cyclotomic binary forms.

%H Peter Luschny, <a href="/A325870/b325870.txt">Table of n, a(n) for n = 1..185</a>

%H Étienne Fouvry, Claude Levesque, and Michel Waldschmidt, <a href="http://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017 and <a href="https://doi.org/10.4064/aa171012-24-12">Acta Arithmetica</a>, online 15 March 2018.

%o (PARI)

%o isA325870(n) =

%o {

%o my(K, M, phi);

%o K = floor(5.383*log(n)^1.161);

%o M = floor(2*sqrt(n/3));

%o for(k = 3, K,

%o phi = eulerphi(k);

%o if(phi >= 4,

%o for(y = 1, M,

%o for(x = y + 1, M,

%o if(n == y^phi*polcyclo(k, x/y),

%o return(1)

%o )))));

%o return(0)

%o }

%Y Cf. A296095, A293654, A325143, A325145.

%K nonn

%O 1,1

%A _Peter Luschny_, May 26 2019

%E At the suggestion of _Michel Waldschmidt_