login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of subsets of {1..n} containing n such that every ordered pair of distinct elements has a different quotient.
10

%I #16 Oct 17 2020 02:33:30

%S 1,2,4,6,14,24,52,84,120,240,548,688,1784,2600,4236,5796,16200,17568,

%T 49968,55648,101360,176792,433736,430032,728784,1360928,2304840,

%U 2990856,8682912,7877376,25243200,27946656,46758912,81457248,121546416,114388320,442583952

%N Number of subsets of {1..n} containing n such that every ordered pair of distinct elements has a different quotient.

%H Fausto A. C. Cariboni, <a href="/A325868/b325868.txt">Table of n, a(n) for n = 1..50</a>

%e The a(1) = 1 through a(5) = 14 subsets:

%e {1} {2} {3} {4} {5}

%e {1,2} {1,3} {1,4} {1,5}

%e {2,3} {2,4} {2,5}

%e {1,2,3} {3,4} {3,5}

%e {1,3,4} {4,5}

%e {2,3,4} {1,2,5}

%e {1,3,5}

%e {1,4,5}

%e {2,3,5}

%e {2,4,5}

%e {3,4,5}

%e {1,2,3,5}

%e {1,3,4,5}

%e {2,3,4,5}

%t Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Divide@@@Subsets[#,{2}]&]],{n,10}]

%Y Cf. A025582, A108917, A143823, A196723, A196724.

%Y Cf. A325853, A325854, A325858, A325860, A325861, A325864, A325869.

%K nonn

%O 1,2

%A _Gus Wiseman_, Jun 02 2019

%E a(21)-a(37) from _Fausto A. C. Cariboni_, Oct 16 2020