login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer partitions of n having n - 1 different submultisets.
11

%I #13 May 12 2021 21:03:17

%S 0,0,0,1,1,2,0,3,0,5,2,2,0,15,0,2,3,25,0,17,0,18,3,2,0,150,0,2,13,24,

%T 0,43,0,351,3,2,2,383,0,2,3,341,0,60,0,37,51,2,0,3733,0,31,3,42,0,460,

%U 1,633,3,2,0,1780,0,2,68,12460,0,87,0,55,3

%N Number of integer partitions of n having n - 1 different submultisets.

%C The number of submultisets of a partition is the product of its multiplicities, each plus one.

%C The Heinz numbers of these partitions are given by A325694.

%H Alois P. Heinz, <a href="/A325836/b325836.txt">Table of n, a(n) for n = 0..1000</a>

%e The a(3) = 1 through a(13) = 15 partitions (empty columns not shown):

%e (3) (22) (32) (322) (432) (3322) (32222) (4432)

%e (41) (331) (531) (4411) (71111) (5332)

%e (511) (621) (5422)

%e (3222) (5521)

%e (6111) (6322)

%e (6331)

%e (6511)

%e (7411)

%e (8221)

%e (8311)

%e (9211)

%e (33322)

%e (55111)

%e (322222)

%e (811111)

%p b:= proc(n, i, p) option remember; `if`(n=0 or i=1,

%p `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,

%p (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))

%p end:

%p a:= n-> b(n$2,n-1):

%p seq(a(n), n=0..80); # _Alois P. Heinz_, Aug 17 2019

%t Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==n-1&]],{n,0,30}]

%t (* Second program: *)

%t b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,

%t If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1);

%t Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]];

%t a[n_] := b[n, n, n-1];

%t a /@ Range[0, 80] (* _Jean-François Alcover_, May 12 2021, after _Alois P. Heinz_ *)

%Y Positions of zeros are A307699.

%Y Cf. A002033, A088880, A088881, A108917, A325694, A325768, A325792, A325798, A325828, A325830, A325833, A325835.

%K nonn

%O 0,6

%A _Gus Wiseman_, May 29 2019