login
Number of integer partitions of n containing all of their distinct multiplicities.
14

%I #5 May 18 2019 22:46:27

%S 1,1,0,1,3,2,4,3,7,8,16,15,24,28,39,44,68,80,98,130,167,200,259,320,

%T 396,497,601,737,910,1107,1335,1631,1983,2372,2887,3439,4166,4949,

%U 5940,7043,8450,9980,11884,13984,16679,19493,23162,27050,31937,37334,43926

%N Number of integer partitions of n containing all of their distinct multiplicities.

%C The Heinz numbers of these partitions are given by A325706.

%e The partition (4,2,1,1,1,1) has distinct multiplicities {1,4}, both of which belong to the partition, so it is counted under a(10).

%e The a(0) = 1 through a(10) = 16 partitions:

%e () (1) (21) (22) (41) (51) (61) (71) (81) (91)

%e (31) (221) (321) (421) (431) (333) (541)

%e (211) (2211) (3211) (521) (531) (631)

%e (3111) (3221) (621) (721)

%e (4211) (3321) (3322)

%e (32111) (4221) (3331)

%e (41111) (5211) (4321)

%e (32211) (5221)

%e (6211)

%e (32221)

%e (33211)

%e (42211)

%e (43111)

%e (322111)

%e (421111)

%e (511111)

%t Table[Length[Select[IntegerPartitions[n],SubsetQ[Sort[#],Sort[Length/@Split[#]]]&]],{n,0,30}]

%Y Cf. A109297, A114639, A114640, A181819, A225486, A290689, A324753, A324843, A325702, A325706, A325707, A325755.

%K nonn

%O 0,5

%A _Gus Wiseman_, May 18 2019