%I #14 Feb 15 2022 10:50:07
%S 0,0,0,1,0,6,4,15,12,28,24,45,40,66,60,91,84,120,112,153,144,190,180,
%T 231,220,276,264,325,312,378,364,435,420,496,480,561,544,630,612,703,
%U 684,780,760,861,840,946,924,1035,1012,1128,1104,1225,1200,1326,1300,1431
%N Number of length-3 compositions of n such that no part is the sum of the other two.
%C A composition of n is a finite sequence of positive integers summing to n.
%C Confirmed recurrence relation from _Colin Barker_ for n <= 5000. - _Fausto A. C. Cariboni_, Feb 15 2022
%H Fausto A. C. Cariboni, <a href="/A325689/b325689.txt">Table of n, a(n) for n = 0..5000</a>
%F Conjectures from _Colin Barker_, May 16 2019: (Start)
%F G.f.: x^3*(1 - x + 4*x^2) / ((1 - x)^3*(1 + x)^2) for n>5.
%F a(n) = -(5 + 3*(-1)^n - 2*n) * (n-2) / 4 for n>0.
%F a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
%F (End)
%e The a(3) = 1 through a(8) = 12 compositions (empty columns not shown):
%e (111) (113) (114) (115) (116)
%e (122) (141) (124) (125)
%e (131) (222) (133) (152)
%e (212) (411) (142) (161)
%e (221) (151) (215)
%e (311) (214) (233)
%e (223) (251)
%e (232) (323)
%e (241) (332)
%e (313) (512)
%e (322) (521)
%e (331) (611)
%e (412)
%e (421)
%e (511)
%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],And@@Table[#[[i]]!=Total[Delete[#,i]],{i,3}]&]],{n,0,30}]
%Y Cf. A000079, A001399, A005044, A008642, A069905, A124278, A266223.
%Y Cf. A325676, A325688, A325690, A325691, A325694.
%K nonn
%O 0,6
%A _Gus Wiseman_, May 15 2019