login
A325647
Number of separable partitions of n in which the number of distinct (repeatable) parts is 3.
1
0, 0, 0, 0, 0, 1, 2, 5, 9, 13, 21, 29, 39, 49, 68, 79, 101, 116, 145, 167, 196, 221, 262, 287, 335, 368, 412, 460, 512, 554, 617, 673, 723, 800, 865, 925, 1001, 1090, 1140, 1250, 1317, 1418, 1493, 1619, 1665, 1828, 1884, 2022, 2098, 2275, 2308, 2520, 2564
OFFSET
1,7
COMMENTS
A partition is separable if there is an ordering of its parts in which no consecutive parts are identical. See A325646 for a guide to related sequences.
EXAMPLE
a(8) counts these 5 partitions: [5,2,1], [4,3,1], [1,4,1,2], [2,3,2,1], [1,3,1,2,1].
MATHEMATICA
(separable=Table[Map[#[[1]]&, Select[Map[{#, Quotient[(1+Length[#]), Max[Map[Length, Split[#]]]]}&, IntegerPartitions[nn]], #[[2]]>1&]], {nn, 35}]);
Map[Length[Select[Map[{#, Length[Union[#]]}&, #], #[[2]]==3&]]&, separable]
(* Peter J. C. Moses, May 08 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 16 2019
STATUS
approved