%I #10 May 13 2019 01:09:47
%S 1,2,1,4,1,5,2,1,7,3,1,9,3,1,1,12,3,1,1,14,5,1,1,16,6,2,1,17,7,3,1,1,
%T 20,8,3,1,1,22,9,3,1,1,1,25,9,3,2,1,1,27,11,4,2,1,1,31,11,4,2,1,1,33,
%U 11,4,3,1,1,1,36,13,4,3,1,1,1,39,13,4,3,1,1,1,1
%N Unsorted q-signature of n!. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the factorization of n! into factors q(i) = prime(i)/i.
%C Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
%C 11 = q(1) q(2) q(3) q(5)
%C 50 = q(1)^3 q(2)^2 q(3)^2
%C 360 = q(1)^6 q(2)^3 q(3)
%C Row n is the sequence of nonzero exponents in the q-factorization of n!.
%C Also the number of terminal subtrees with Matula-Goebel number k of the rooted tree with Matula-Goebel number n!.
%e We have 10! = q(1)^16 q(2)^6 q(3)^2 q(4), so row n = 10 is (16,6,2,1).
%e Triangle begins:
%e {}
%e 1
%e 2 1
%e 4 1
%e 5 2 1
%e 7 3 1
%e 9 3 1 1
%e 12 3 1 1
%e 14 5 1 1
%e 16 6 2 1
%e 17 7 3 1 1
%e 20 8 3 1 1
%e 22 9 3 1 1 1
%e 25 9 3 2 1 1
%e 27 11 4 2 1 1
%e 31 11 4 2 1 1
%e 33 11 4 3 1 1 1
%e 36 13 4 3 1 1 1
%e 39 13 4 3 1 1 1 1
%e 42 14 5 3 1 1 1 1
%t difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
%t Table[Length/@Split[difac[n!]],{n,20}]
%Y Row lengths are A000720.
%Y Row sums are A325544(n) - 1.
%Y Column k = 1 is A325543.
%Y Cf. A056239, A067255, A112798, A118914, A124010.
%Y Matula-Goebel numbers: A007097, A061775, A109129, A196050, A317713, A324935.
%Y Factorial numbers: A000142, A011371, A022559, A071626, A115627, A325276.
%Y q-factorization: A324922, A324923, A324924, A325614, A325615, A325660.
%K nonn,tabf
%O 1,2
%A _Gus Wiseman_, May 12 2019