The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A325603 Lower left-hand y-coordinate for 2 X 2 invisible forest with 0 < x < y. 9
 20, 35, 35, 54, 65, 77, 69, 84, 84, 98, 99, 104, 99, 95, 114, 104, 119, 98, 110, 114, 104, 132, 135, 119, 132, 153, 135, 174, 174, 161, 175, 147, 170, 186, 189, 159, 189, 153, 170, 195, 189, 195, 185, 195, 185, 195, 209, 216, 224, 224 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS These are 2 X 2 rectangles of lattice points not visible along straight lines of sight from the origin. The sequence is ordered by Euclidean distance from (0,0). LINKS Benjamin Hutz, Table of n, a(n) for n = 1..1000 E. Goins, P. Harris, B. Kubik, A. Mbirika, Lattice Point Visibility on Generalized Lines of Sight, arXiv:1710.04554 [math.NT], 2017; Amer. Math. Monthly 125 (2018) 593-601. F. Herzog, B. M. Stewart, Patterns of Visible and Nonvisible Lattice Points, Amer. Math. Monthly 78 (1971) 487-496 S. Laishram, F. Luca, Rectangles Of Nonvisible Lattice Points, J. Int. Seq. 18 (2015) 15.10.8. EXAMPLE (14,20), (14,35), (20,35), (44,54), (39,65), (21,77), (45,69), (34,84). PROG def is_nxn(x, y, n):     if all([gcd(x+a, y+b) != 1 for a in range(n) for b in range(n)]):         return True     return False def insert_item(pts, item, index):     N = len(pts)     if N == 0:       return [item]     elif N == 1:         if item[index] < pts[0][index]:             pts.insert(0, item)         else:             pts.append(item)         return pts     else: #binary insertion         left = 1         right = N         mid = ((left + right)/2).floor()         if item[index] < pts[mid][index]:         # item goes into first half             return insert_item(pts[:mid], item, index) + pts[mid:N]         else:         # item goes into second half             return pts[:mid] + insert_item(pts[mid:N], item, index) B=1200 L=[] for x in range(1, B):     for y in range(x+1, B):         if is_nxn(x, y, n=2):             G=[x, y, x^2+y^2]             L=insert_item(L, G, 2) CROSSREFS Cf. A157426, A157427, A157428, A157429, A325602, A325604, A325605, A325606, A325607. Sequence in context: A068476 A003895 A157426 * A024747 A328051 A081962 Adjacent sequences:  A325600 A325601 A325602 * A325604 A325605 A325606 KEYWORD nonn AUTHOR Benjamin Hutz, May 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 06:36 EDT 2022. Contains 353889 sequences. (Running on oeis4.)