login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325579
G.f. A(x) satisfies: 1/(1-x) = Sum_{n>=0} x^n * (1+x)^(n*(n-1)/2) / A(x)^(n*(n+1)/2).
1
1, 0, 1, 0, 1, 1, 3, 10, 31, 121, 464, 1944, 8454, 38468, 182126, 893488, 4535670, 23760888, 128267430, 712403572, 4065752904, 23816376636, 143051516760, 880239634009, 5544258942957, 35718401802001, 235202635677715, 1582012735794119, 10862478047272181, 76093536057355965, 543536686935606339, 3956823673660817241, 29341805120002375853, 221536339165494454489, 1702261439852726415968, 13305909830342110613840, 105760138628395361333444
OFFSET
0,7
COMMENTS
Compare to: 1+x = Sum_{n>=0} x^n * (1+x)^(n*(n-1)/2) / G(x)^(n*(n+1)/2) holds when G(x) = (1+x).
EXAMPLE
G.f.: A(x) = 1 + x^2 + x^4 + x^5 + 3*x^6 + 10*x^7 + 31*x^8 + 121*x^9 + 464*x^10 + 1944*x^11 + 8454*x^12 + 38468*x^13 + 182126*x^14 + 893488*x^15 + ...
such that
1/(1-x) = 1 + x/A(x) + x^2*(1+x)/A(x)^3 + x^3*(1+x)^3/A(x)^6 + x^4*(1+x)^6/A(x)^10 + x^5*(1+x)^10/A(x)^15 + x^6*(1+x)^15/A(x)^21 + x^7*(1+x)^21/A(x)^28 + x^8*(1+x)^28/A(x)^36 + x^9*(1+x)^36/A(x)^45 + ...
PROG
(PARI) a(n)=my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(sum(m=0, #A, x^m*((1+x+x*O(x^#A))^(m*(m-1)/2)/Ser(A)^(m*(m+1)/2)-1)), #A)); A[n+1]
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A325578.
Sequence in context: A005725 A302287 A079522 * A034016 A001403 A072136
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 01 2019
STATUS
approved