Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 May 07 2019 23:14:32
%S 1,2,6,28,340,3108,106932,2732340,236790060,19703562780,3419598096420,
%T 674127752953380,264134168649181380,95825592671995399620,
%U 67662122741507082338220,50556978553034312461203420,69259146896604886347745839660,104191622563656655781003976625020
%N Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all integer partitions of n.
%C Also the Heinz number of row n of A066633.
%C The Heinz number of an integer partition or sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%F a(n) = Product_{i = 1..n} prime(A066633(n,i)).
%F a(n) = A181819(A003963(A325500(n))).
%F a(n) = A181819(A325501(n)).
%F A001222(a(n)) = n.
%F A056239(a(n)) = A006128(n).
%F For n > 0, A181819(a(n)) = A087009(n + 1).
%e The integer partitions of 4 are {(4), (3,1), (2,2), (2,1,1), (1,1,1,1)}, with multiset union {1,1,1,1,1,1,1,2,2,2,3,4}, with multiplicities (7,3,1,1), so a(4) = prime(7)*prime(3)*prime(1)*prime(1) = 340.
%e The sequence of terms together with their prime indices begins:
%e 1: {}
%e 2: {1}
%e 6: {1,2}
%e 28: {1,1,4}
%e 340: {1,1,3,7}
%e 3108: {1,1,2,4,12}
%e 106932: {1,1,2,4,8,19}
%e 2732340: {1,1,2,3,6,11,30}
%e 236790060: {1,1,2,3,6,9,19,45}
%e 19703562780: {1,1,2,3,5,8,15,26,67}
%e 3419598096420: {1,1,2,3,5,8,13,21,41,97}
%e 674127752953380: {1,1,2,3,5,7,12,18,31,56,139}
%e 264134168649181380: {1,1,2,3,5,7,12,17,28,45,83,195}
%e 95825592671995399620: {1,1,2,3,5,7,11,16,25,38,63,112,272}
%e 67662122741507082338220: {1,1,2,3,5,7,11,16,24,35,55,87,160,373}
%t Table[Times@@Prime/@Length/@Split[Sort[Join@@IntegerPartitions[n]]],{n,0,15}]
%Y Cf. A001222, A003963, A006128, A007870, A056239, A066633, A087009, A112798, A215366, A302246, A325500, A325501, A325513.
%K nonn
%O 0,2
%A _Gus Wiseman_, May 07 2019