login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325387
Numbers with adjusted frequency depth 4 whose prime indices cover an initial interval of positive integers.
2
12, 18, 24, 48, 54, 72, 96, 108, 144, 162, 192, 288, 324, 360, 384, 432, 486, 540, 576, 600, 648, 720, 768, 864, 972, 1152, 1200, 1260, 1350, 1440, 1458, 1500, 1536, 1620, 1728, 1944, 2100, 2160, 2250, 2304, 2400, 2592, 2880, 2916, 2940, 3072, 3150, 3240, 3456
OFFSET
1,1
COMMENTS
The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with adjusted frequency depth 4 whose parts cover an initial interval of positive integers. The enumeration of these partitions by sum is given by A325335.
EXAMPLE
The sequence of terms together with their prime indices begins:
12: {1,1,2}
18: {1,2,2}
24: {1,1,1,2}
48: {1,1,1,1,2}
54: {1,2,2,2}
72: {1,1,1,2,2}
96: {1,1,1,1,1,2}
108: {1,1,2,2,2}
144: {1,1,1,1,2,2}
162: {1,2,2,2,2}
192: {1,1,1,1,1,1,2}
288: {1,1,1,1,1,2,2}
324: {1,1,2,2,2,2}
360: {1,1,1,2,2,3}
384: {1,1,1,1,1,1,1,2}
432: {1,1,1,1,2,2,2}
486: {1,2,2,2,2,2}
540: {1,1,2,2,2,3}
576: {1,1,1,1,1,1,2,2}
600: {1,1,1,2,3,3}
MATHEMATICA
normQ[n_Integer]:=Or[n==1, PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]];
fdadj[n_Integer]:=If[n==1, 0, Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#1]&, n, !PrimeQ[#1]&]]];
Select[Range[10000], normQ[#]&&fdadj[#]==4&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 02 2019
STATUS
approved