login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325353
Number of integer partitions of n whose k-th differences are weakly decreasing for all k >= 0.
9
1, 1, 2, 3, 4, 5, 7, 7, 9, 11, 12, 13, 17, 16, 19, 23, 23, 24, 30, 29, 35, 37, 37, 40, 49, 47, 51, 56, 59, 61, 73, 65, 75, 80, 84, 91, 99, 91, 103, 112, 120, 114, 132, 126, 143, 154, 147, 152, 175, 169, 190, 187, 194, 198, 226, 225, 231, 236, 246, 256, 293
OFFSET
0,3
COMMENTS
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325397.
EXAMPLE
The a(1) = 1 through a(8) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(11111) (222) (331) (71)
(321) (2221) (332)
(111111) (1111111) (431)
(2222)
(11111111)
The first partition that has weakly decreasing differences (A320466) but is not counted under a(9) is (3,3,2,1), whose first and second differences are (0,-1,-1) and (-1,0) respectively.
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@Table[GreaterEqual@@Differences[#, k], {k, 0, Length[#]}]&]], {n, 0, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 02 2019
STATUS
approved