login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies 1 = Sum_{n>=0} ((1+x)^(n*(n-1)/2) / A(x)^n) * (2^n/3^(n+1)).
1

%I #15 Oct 02 2019 05:19:51

%S 1,2,16,380,15280,842672,57985144,4735508672,445364211760,

%T 47281191656960,5586025249211056,726588091176753152,

%U 103169269785836042656,15880361395424986644320,2634307488850605478606240,468569833279898692863674720,88975116507316444085923086400,17966290253142630862386608565440,3844488506759131598435757854078080,869080066111317591084733034309229440,206969312517505574682143594517889278400

%N G.f. satisfies 1 = Sum_{n>=0} ((1+x)^(n*(n-1)/2) / A(x)^n) * (2^n/3^(n+1)).

%H Paul D. Hanna, <a href="/A325287/b325287.txt">Table of n, a(n) for n = 0..50</a>

%e G.f.: A(x) = 1 + 2*x + 16*x^2 + 380*x^3 + 15280*x^4 + 842672*x^5 + 57985144*x^6 + 4735508672*x^7 + 445364211760*x^8 + 47281191656960*x^9 + 5586025249211056*x^10 + ...

%t a[n_] := Module[{A}, A = {1}; Do[AppendTo[A, 0]; A[[-1]] = Round[ Coefficient[ Sum[(1+x + x*O[x]^Length[A])^(m*(m-1)/2)/(A.x^Range[0, Length[A] - 1])^m*2^m/3^(m + 1), {m, 0, 30 Length[A] + 200}]/2, x, Length[A] - 1]], {i, 1, n}]; Print[A[[n + 1]]]; A[[n + 1]]];

%t a /@ Range[0, 25] (* _Jean-François Alcover_, Oct 02 2019 *)

%o (PARI) /* Requires adequate precision */

%o \p500

%o {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = round( polcoeff( sum(m=0, 30*#A+200, (1+x+x*O(x^#A))^(m*(m-1)/2)/Ser(A)^m*2^m/3^(m+1)*1.)/2, #A-1))); A[n+1]}

%o for(n=0, 25, print1(a(n), ", "))

%Y Cf. A325286.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Apr 23 2019

%E Added missing parentheses to definition. - _N. J. A. Sloane_, Aug 01 2019