login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A325252
Number of integer partitions of n with frequency depth floor(sqrt(n)).
1
1, 1, 1, 1, 2, 1, 3, 1, 3, 8, 11, 11, 19, 17, 25, 29, 83, 113, 124, 171, 190, 242, 289, 368, 399, 796, 981, 1182, 1442, 1709, 2096, 2469, 2990, 3545, 4276, 5037, 8417, 10466, 12824, 15721, 19104, 23267, 27981, 33856, 40515, 48508, 57826, 68982, 81493, 446, 738
OFFSET
0,5
COMMENTS
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
EXAMPLE
The a(2) = 1 through a(12) = 19 partitions (A = 10, B = 11):
2 3 22 11111 33 1111111 44 54 64 65 75
1111 222 2222 63 73 74 84
111111 11111111 72 82 83 93
81 91 92 A2
432 532 A1 B1
531 541 542 543
621 631 632 642
222111 721 641 651
3322 731 732
4321 821 741
4411 5321 831
921
4422
5421
5511
6321
332211
333111
22221111
MATHEMATICA
fdadj[ptn_List]:=If[ptn=={}, 0, Length[NestWhileList[Sort[Length/@Split[#1]]&, ptn, Length[#1]>1&]]];
Table[Length[Select[IntegerPartitions[n], fdadj[#]==Floor[Sqrt[n]]&]], {n, 0, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 22 2019
STATUS
approved