login
Numbers > 1 whose maximum prime exponent is one greater than their minimum.
11

%I #16 Jan 30 2023 02:39:58

%S 12,18,20,28,44,45,50,52,60,63,68,72,75,76,84,90,92,98,99,108,116,117,

%T 124,126,132,140,147,148,150,153,156,164,171,172,175,180,188,198,200,

%U 204,207,212,220,228,234,236,242,244,245,252,260,261,268,275,276,279

%N Numbers > 1 whose maximum prime exponent is one greater than their minimum.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose maximum multiplicity is one greater than their minimum (counted by A325279).

%C The asymptotic density of this sequence is 1/zeta(3) - 1/zeta(2) = A088453 - A059956 = 0.22398... . - _Amiram Eldar_, Jan 30 2023

%H Michael S. Branicky, <a href="/A325241/b325241.txt">Table of n, a(n) for n = 1..10000</a>

%F A051903(a(n)) - A051904(a(n)) = 1.

%e The sequence of terms together with their prime indices begins:

%e 12: {1,1,2}

%e 18: {1,2,2}

%e 20: {1,1,3}

%e 28: {1,1,4}

%e 44: {1,1,5}

%e 45: {2,2,3}

%e 50: {1,3,3}

%e 52: {1,1,6}

%e 60: {1,1,2,3}

%e 63: {2,2,4}

%e 68: {1,1,7}

%e 72: {1,1,1,2,2}

%e 75: {2,3,3}

%e 76: {1,1,8}

%e 84: {1,1,2,4}

%e 90: {1,2,2,3}

%e 92: {1,1,9}

%e 98: {1,4,4}

%e 99: {2,2,5}

%t Select[Range[100],Max@@FactorInteger[#][[All,2]]-Min@@FactorInteger[#][[All,2]]==1&]

%t Select[Range[300], Min[e = FactorInteger[#][[;; , 2]]] +1 == Max[e] &] (* _Amiram Eldar_, Jan 30 2023 *)

%o (Python)

%o from sympy import factorint

%o def ok(n):

%o e = sorted(factorint(n).values())

%o return n > 1 and max(e) == 1 + min(e)

%o print([k for k in range(280) if ok(k)]) # _Michael S. Branicky_, Dec 18 2021

%o (PARI) is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) + 1 == vecmax(e); } \\ _Amiram Eldar_, Jan 30 2023

%Y Positions of 1's in A062977. Supersequence of A054753, A096156.

%Y Cf. A001221, A001222, A001694, A051903, A051904, A052485, A056239, A112798, A118914, A325240, A325259, A325270, A325279.

%Y Cf. A059956, A088453.

%K nonn

%O 1,1

%A _Gus Wiseman_, Apr 15 2019