login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325216
G.f. A(x) satisfies: 1 = Sum_{n>=0} (1 + 3*x)^(n^3) / A(x)^(n^2) * 1/2^(n+1).
2
1, 13, 2169, 2978509, 9280313659, 48235745422023, 369813382363308535, 3909740189577825437323, 54527701144836157579584201, 970962668611869711040922366005, 21515265687657935356949478953957425, 580980133435728709625260571749908867477, 18788362634592779032654472355826818388313283, 717059741765903711219719995640847718723285774351
OFFSET
0,2
LINKS
EXAMPLE
G.f.: A(x) =1 + 13*x + 2169*x^2 + 2978509*x^3 + 9280313659*x^4 + 48235745422023*x^5 + 369813382363308535*x^6 + 3909740189577825437323*x^7 + ...
such that
1 = 1/2 + (1+3*x)/A(x)*1/2^2 + (1+3*x)^8/A(x)^4*1/2^3 + (1+3*x)^27/A(x)^9*1/2^4 + (1+3*x)^64/A(x)^16*1/2^5 + (1+3*x)^125/A(x)^25*1/2^6 + (1+3*x)^216/A(x)^36*1/2^7 + (1+3*x)^343/A(x)^49*1/2^8 + (1+3*x)^512/A(x)^64*1/2^9 + ...
PROG
(PARI) /* Requires suitable precision */
{a(n) = my(A=[1]); for(i=0, n,
A=concat(A, 0); A[#A] = round( polcoeff( sum(n=0, 30*#A+100, (1 + 3*x +x*O(x^#A))^(n^3) / Ser(A)^(n^2) * 1/2^(n+1)*1.), #A-1))/3; ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A283633 A221823 A075601 * A161588 A221927 A013718
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 19 2019
STATUS
approved