login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325207
a(n) is the number of labeled rooted trees on a set of size n where each node has at most 8 neighbors that are further away from the root than the node itself.
1
0, 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 999999990, 25937423490, 743008289364, 23298080054964, 793714478374818, 29192909282466930, 1152920554828545360, 48661137306426044400, 2185908358103092063584, 104127157513055758393026, 5242868049702388548952080
OFFSET
0,3
COMMENTS
A preimage constraint on a function is a set of nonnegative integers such that the size of the inverse image of any element is one of the values in that set. View a labeled rooted tree as an endofunction on the set {1,2,...,n} by sending every non-root node to its neighbor that is closer to the root and sending the root to itself. Thus, a(n) is the number of endofunctions on a set of size n with exactly one cyclic point and such that each preimage has at most 8 entries.
LINKS
B. Otto, Coalescence under Preimage Constraints, arXiv:1903.00542 [math.CO], 2019, Corollaries 5.3 and 7.8.
FORMULA
a(n) = (n-1)! * [x^(n-1)] e_8(x)^n, where e_k(x) is the truncated exponential 1 + x + x^2/2! + ... + x^k/k!. The link above yields explicit constants c_k, r_k so that the columns are asymptotically c_8 * n^(-3/2) * r_8^-n.
PROG
(Python)
# print first num_entries entries in the sequence
import math, sympy; x=sympy.symbols('x')
k=8; num_entries = 64
P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0, 1]; curr_pow = eP
for term in range(1, num_entries-1):
curr_pow=(curr_pow*eP).expand()
r.append(curr_pow.coeff(x**term)*math.factorial(term))
print(r)
CROSSREFS
Column k=8 of A325201; see that entry for sequences related to other preimage constraints constructions.
Sequence in context: A036777 A325205 A325206 * A325208 A055860 A152917
KEYWORD
easy,nonn
AUTHOR
Benjamin Otto, Apr 11 2019
STATUS
approved