login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Heinz numbers of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.
7

%I #6 Apr 10 2019 22:03:00

%S 3,4,6,15,18,25,27,30,45,50,75,175,245,250,343,350,375,490,525,625,

%T 686,735,875,1029,1225,1715,3773,4802,5929,7203,7546,9317,11319,11858,

%U 12005,14641,16807,17787,18634,18865,26411,27951,29282,29645,41503,43923,46585

%N Heinz numbers of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.

%C The enumeration of these partitions by sum is given by A325181.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%H Gus Wiseman, <a href="/A325179/a325179.png">Young diagrams for the first 32 terms</a>.

%e The sequence of terms together with their prime indices begins:

%e 3: {2}

%e 4: {1,1}

%e 6: {1,2}

%e 15: {2,3}

%e 18: {1,2,2}

%e 25: {3,3}

%e 27: {2,2,2}

%e 30: {1,2,3}

%e 45: {2,2,3}

%e 50: {1,3,3}

%e 75: {2,3,3}

%e 175: {3,3,4}

%e 245: {3,4,4}

%e 250: {1,3,3,3}

%e 343: {4,4,4}

%e 350: {1,3,3,4}

%e 375: {2,3,3,3}

%e 490: {1,3,4,4}

%e 525: {2,3,3,4}

%e 625: {3,3,3,3}

%t durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];

%t codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]];

%t Select[Range[1000],codurf[#]-durf[#]==1&]

%Y Numbers k such that A263297(k) - A257990(k) = 1.

%Y Positions of 1's in A325178.

%Y Cf. A056239, A093641, A112798, A325180, A325181, A325192, A325196, A325198.

%K nonn

%O 1,1

%A _Gus Wiseman_, Apr 08 2019