login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Size of the internal portion of the integer partition with Heinz number n.
14

%I #10 Apr 19 2019 11:22:02

%S 0,0,0,0,0,1,0,0,1,1,0,1,0,1,2,0,0,2,0,1,2,1,0,1,2,1,2,1,0,3,0,0,2,1,

%T 3,2,0,1,2,1,0,3,0,1,3,1,0,1,3,3,2,1,0,3,3,1,2,1,0,3,0,1,3,0,3,3,0,1,

%U 2,4,0,2,0,1,4,1,4,3,0,1,3,1,0,3,3,1,2,1,0,4,4,1,2,1,3,1,0,4,3,3,0,3,0,1,5

%N Size of the internal portion of the integer partition with Heinz number n.

%C The internal portion of an integer partition consists of all squares in the Young diagram that have a square both directly below and directly to the right.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%H Antti Karttunen, <a href="/A325166/b325166.txt">Table of n, a(n) for n = 1..20000</a>

%H Antti Karttunen, <a href="/A325166/a325166.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%F a(n) = A056239(n) - A061395(n) - A001222(n) + A001221(n).

%F a(n) = A056239(n) - A297113(n).

%e The partition with Heinz number 7865 is (6,5,5,3), with diagram

%e o o o o o o

%e o o o o o

%e o o o o o

%e o o o

%e with internal portion

%e o o o o o

%e o o o o

%e o o o

%e of size 12, so a(7865) = 12.

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t Table[If[n==1,0,Total[primeMS[n]]-Max[primeMS[n]]-Length[primeMS[n]]+Length[Union[primeMS[n]]]],{n,100}]

%o (PARI)

%o A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }

%o A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));

%o A325166(n) = (A056239(n) - A061395(n) - bigomega(n) + omega(n)); \\ _Antti Karttunen_, Apr 14 2019

%Y Positions of zeros are A174090.

%Y Cf. A001221, A001222, A052126, A056239, A061395, A064989, A065770, A112798, A252464, A257990, A297113, A325133, A325135, A325167, A325169.

%K nonn

%O 1,15

%A _Gus Wiseman_, Apr 05 2019

%E More terms from _Antti Karttunen_, Apr 14 2019