login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Heinz number of the integer partition obtained by removing the inner lining, or, equivalently, the largest hook, of the integer partition with Heinz number n.
7

%I #9 Apr 19 2019 11:21:34

%S 1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,3,1,4,1,1,2,1,1,2,1,

%T 3,2,1,1,2,1,1,2,1,1,4,1,1,1,5,3,2,1,1,4,3,1,2,1,1,2,1,1,4,1,3,2,1,1,

%U 2,3,1,2,1,1,6,1,5,2,1,1,8,1,1,2,3,1,2,1,1,4,5,1,2,1,3,1,1,5,4,3,1,2,1,1,6

%N Heinz number of the integer partition obtained by removing the inner lining, or, equivalently, the largest hook, of the integer partition with Heinz number n.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%H Antti Karttunen, <a href="/A325133/b325133.txt">Table of n, a(n) for n = 1..20000</a>

%H Antti Karttunen, <a href="/A325133/a325133.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%F a(n) = A064989(A052126(n)) = A052126(A064989(n)).

%e The partition with Heinz number 715 is (6,5,3), with diagram

%e o o o o o o

%e o o o o o

%e o o o

%e which has inner lining

%e o o

%e o o o

%e o o o

%e or largest hook

%e o o o o o o

%e o

%e o

%e both of which have complement

%e o o o o

%e o o

%e which is the partition (4,2) with Heinz number 21, so a(715) = 21.

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t Table[If[n==1,1,Times@@Prime/@DeleteCases[Most[primeMS[n]]-1,0]],{n,100}]

%o (PARI)

%o A052126(n) = if(1==n,n,n/vecmax(factor(n)[, 1]));

%o A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };

%o A325133(n) = A052126(A064989(n)); \\ _Antti Karttunen_, Apr 14 2019

%Y Positions of ones are A093641 (Heinz numbers of hooks). The number of iterations required to reach 1 starting with n is A257990(n).

%Y Cf. A000720, A001222, A046660, A052126, A056239, A061395, A064989, A112798, A243055, A252464, A325134, A325135.

%K nonn

%O 1,9

%A _Gus Wiseman_, Apr 02 2019

%E More terms from _Antti Karttunen_, Apr 14 2019