login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthoplex using up to k colors.
11

%I #18 Jun 15 2019 14:43:43

%S 0,1,0,3,0,0,6,3,1,0,10,15,66,94,0,15,45,920,97974,1047816,0,21,105,

%T 6350,10700090,481141220994,400140831558512,0,28,210,29505,390081800,

%U 4802390808840576,74515656021475803734579625,527471421741473576372948457251328,0

%N Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

%C Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. The chiral colorings of its facets come in pairs, each the reflection of the other.

%C Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

%H Robert A. Russell, <a href="/A325014/b325014.txt">Table of n, a(n) for n = 1..78</a>

%H E. M. Palmer and R. W. Robinson, <a href="https://projecteuclid.org/euclid.acta/1485889789">Enumeration under two representations of the wreath product</a>, Acta Math., 131 (1973), 123-143.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Cross-polytope">Cross-polytope</a>

%F The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.

%F A(k,n) = A325012(n,k) - A325013(n,k) = (A325012(n,k) - A325015(n,k)) / 2 = A325013(n,k) - A325015(n,k).

%F A(n,k) = Sum_{j=2..2^n} A325018(n,j) * binomial(k,j).

%e Array begins with A(1,1):

%e 0 1 3 6 10 15 21 28 ...

%e 0 0 3 15 45 105 210 378 ...

%e 0 1 66 920 6350 29505 106036 317856 ...

%e 0 94 97974 10700090 390081800 7280687610 86121007714 730895668104 ...

%e For A(2,3)=3, each square has one of the three colors on two adjacent edges.

%t a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)

%t a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)

%t CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)

%t CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)

%t compress[x : {{_, _} ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)

%t cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};

%t Unprotect[Times]; Times[CI[a_List], CI[b_List]] := (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];

%t CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]

%t CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]

%t pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)

%t row[n_Integer] := row[n] = Factor[(Total[((CI0[#] - CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])

%t array[n_, k_] := row[n] /. j -> k

%t Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

%Y Cf. A325012 (oriented), A325013 (unoriented), A325015 (achiral), A325018 (exactly k colors).

%Y Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325006 (orthotope).

%Y Rows 1-2 are A161680, A050534.

%Y Cf. A000048, A001037.

%K nonn,tabl,easy

%O 1,4

%A _Robert A. Russell_, May 27 2019