Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 08 2022 08:46:24
%S 1,3,5,7,0,11,13,21,17,19,40,23,34,39,29,31,63,46,37,57,41,43,76,47,0,
%T 99,53,74,0,59,61,93,86,67,116,71,73,111,125,79,175,83,171,121,89,122,
%U 0,141,97,0,101,103,0,107,109,188,113,250,0,158,169,183,166
%N a(n) = the smallest number k such that floor(sigma(k)/tau(k)) = n, or 0 if no such number k exists.
%C Floor(sigma(n)/tau(n)) = floor(A000203(n)/A000005(n)) = A057022(n) for n >= 1.
%C Odd primes are terms.
%C a(n) = 0 for numbers n = 5, 25, 29, 47, 50, 53, 59, 83, 89, ...
%H Robert Israel, <a href="/A324990/b324990.txt">Table of n, a(n) for n = 1..2000</a>
%e For n = 4; number 7 is the smallest number k with floor(sigma(k)/tau(k)) = 4; floor(sigma(7)/tau(7)) = floor(8/2) = 4.
%p N:= 100: # for a(1)..a(N)
%p V:= Vector(N):
%p for k from 1 to N^2 do
%p v:= floor(numtheory:-sigma(k)/numtheory:-tau(k));
%p if v <= N and V[v]=0 then V[v]:= k fi
%p od:
%p convert(V,list); # _Robert Israel_, Sep 13 2020
%o (Magma) Ax:=func<n|exists(r){m:m in[1..10000] | Floor(SumOfDivisors(m)/ NumberOfDivisors(m)) eq n}select r else 0>; [Ax(n): n in[1..80]]
%Y Cf. A000005, A000203, A057022, A162538, A324991.
%K nonn,look
%O 1,2
%A _Jaroslav Krizek_, Mar 23 2019