Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Apr 27 2024 03:35:46
%S 6,10,15,21,22,30,33,34,35,39,42,46,51,55,57,58,65,66,69,70,78,82,85,
%T 87,91,93,94,95,102,105,106,111,114,115,118,123,129,130,133,138,141,
%U 142,145,154,155,159,165,166,174,177,178,183,185,186,190,195,201,202
%N Squarefree polygonal numbers P(s,n) with s >= 3 and n >= 3.
%C The main entry for this sequence is A090466 = polygonal numbers of order (or rank) greater than 2.
%C The special polygonal numbers A324973 form a subsequence that contains all Carmichael numbers A002997. See Kellner and Sondow 2019.
%H Amiram Eldar, <a href="/A324972/b324972.txt">Table of n, a(n) for n = 1..10000</a>
%H Bernd C. Kellner and Jonathan Sondow, <a href="http://math.colgate.edu/~integers/v52/v52.pdf">On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits</a>, Integers 21 (2021), #A52, 21 pp.; <a href="https://arxiv.org/abs/1902.10672">arXiv preprint</a>, arXiv:1902.10672 [math.NT], 2019-2021.
%H Bernd C. Kellner, <a href="http://math.colgate.edu/~integers/w38/w38.pdf">On primary Carmichael numbers</a>, Integers 22 (2022), #A38, 39 pp.; <a href="https://arxiv.org/abs/1902.11283">arXiv preprint</a>, arXiv:1902.11283 [math.NT], 2019-2022.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>.
%F Squarefree P(s,n) = (n^2*(s-2)-n*(s-4))/2 with s >= 3 and n >= 3.
%e P(3,3) = 6 which is squarefree, so a(1) = 6.
%t mx = 250; n = s = 3; lst = {};
%t While[s < Floor[mx/3] + 2, a = (n^2 (s - 2) - n (s - 4))/2;
%t If[a < mx + 1, AppendTo[lst, a], (s++; n = 2)]; n++]; lst = Union@lst;
%t Select[lst, SquareFreeQ]
%o (PARI) isok(n) = if (!issquarefree(n), return (0)); for(s=3, n\3+1, ispolygonal(n, s) && return(s)); \\ _Michel Marcus_, Mar 24 2019
%Y Intersection of A005117 and A090466.
%Y Includes A324973 which contains A002997.
%K nonn
%O 1,1
%A _Bernd C. Kellner_ and _Jonathan Sondow_, Mar 21 2019