login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324954
E.g.f.: Sum_{n>=0} x^n * (exp(n*x) + 1)^n / (1 + x*exp(n*x))^(n+1).
4
1, 1, 4, 21, 268, 4185, 100146, 2944921, 110303880, 4976190225, 267276082150, 16769865552561, 1212712561009500, 99940859707310089, 9294528076388524074, 967395346945752464265, 111872727929427271336336, 14283181659779238236208801, 2002001211803983519973104974, 306524554411560349543442894017, 51035879163206907059508782146980
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Sum_{n>=0} x^n * (exp(n*x) + 1)^n / (1 + x*exp(n*x))^(n+1).
E.g.f.: Sum_{n>=0} x^n * (exp(n*x) - 1)^n / (1 - x*exp(n*x))^(n+1).
E.g.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (exp(n*x) - exp(k*x))^(n-k).
E.g.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (-1)^k * (exp(n*x) + exp(k*x))^(n-k).
E.g.f.: Sum_{n>=0} x^n*Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} binomial(n-k,j) * (-1)^j * exp((n-j)*(n-k)*x).
FORMULAS INVOLVING TERMS.
a(n) = Sum_{i=0..n} n!/i! * Sum_{j=0..n-i} binomial(n-i,j) * Sum_{k=0..n-i-j} (-1)^k * binomial(n-i-j,k) * (n-i-j)^i * (n-i-k)^i.
a(n) = Sum_{i=0..n} Sum_{j=0..n-i} Sum_{k=0..n-i-j} (-1)^k * n!*(n-i)! / ((n-i-j-k)! * i!*j!*k!) * (n-i-j)^i * (n-i-k)^i.
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 21*x^3/3! + 268*x^4/4! + 4185*x^5/5! + 100146*x^6/6! + 2944921*x^7/7! + 110303880*x^8/8! + 4976190225*x^9/9! + 267276082150*x^10/10! + ...
such that
A(x) = 1/(1+x) + x*(exp(x) + 1)/(1 + x*exp(x))^2 + x^2*(exp(2*x) + 1)^2/(1 + x*exp(2*x))^3 + x^3*(exp(3*x) + 1)^3/(1 + x*exp(3*x))^4 + x^4*(exp(4*x) + 1)^4/(1 + x*exp(4*x))^5 + x^5*(exp(5*x) + 1)^5/(1 + x*exp(5*x))^6 + x^6*(exp(6*x) + 1)^6/(1 + x*exp(6*x))^7 + x^7*(exp(x)^7 + 1)^7/(1 + x*exp(x)^7)^8 + ...
also,
A(x) = 1/(1-x) + x*(exp(x) - 1)/(1 - x*exp(x))^2 + x^2*(exp(2*x) - 1)^2/(1 - x*exp(2*x))^3 + x^3*(exp(3*x) - 1)^3/(1 - x*exp(3*x))^4 + x^4*(exp(4*x) - 1)^4/(1 - x*exp(4*x))^5 + x^5*(exp(5*x) - 1)^5/(1 - x*exp(5*x))^6 + x^6*(exp(6*x) - 1)^6/(1 - x*exp(6*x))^7 + x^7*(exp(x)^7 - 1)^7/(1 - x*exp(x)^7)^8 + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n+1, x^m*(exp(m*x +x*O(x^n) ) + 1)^m/(1 + x*exp(m*x +x*O(x^n) ) )^(m+1) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n+1, x^m*(exp(m*x +x*O(x^n) ) - 1)^m/(1 - x*exp(m*x +x*O(x^n) ) )^(m+1) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = sum(i=0, n, n!/i! * sum(j=0, n-i, binomial(n-i, j) * sum(k=0, n-i-j, (-1)^k * binomial(n-i-j, k) * (n-i-j)^i * (n-i-k)^i )))}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, n-i-j, (-1)^j*n!*(n-i)!/((n-i-j-k)!*i!*j!*k!) * (n-i-j)^i * (n-i-k)^i )))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 24 2019
STATUS
approved