Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 Mar 27 2019 18:56:00
%S 0,1,2,2,3,3,4,3,3,4,5,4,6,5,4,4,7,4,8,5,5,6,9,5,5,7,4,6,10,5,11,5,6,
%T 8,5,5,12,9,7,6,13,6,14,7,5,10,15,6,6,4,8,8,16,5,6,7,9,11,17,6,18,12,
%U 6,6,7,7,19,9,10,6,20,6,21,13,4,10,6,8,22,7,6,14,23,7,8,15,11,8,24,6,7,11,12,16,9,7,25,5,7,6,26,9,27,9,6
%N a(n) is the binary length of A324876(n).
%C Differs from A324863 [binary length of A324866(n)] for the first time at n=50.
%H Antti Karttunen, <a href="/A324861/b324861.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(1) = 0; for n > 1, a(n) = A070939(A324876(n)) = 1 + A000523(A324876(n)).
%F a(A000040(n)) = n.
%e For n = 50, A324876(50) = 9, in binary "1001" with length 4, thus a(50) = 4.
%o (PARI) A324861(n) = #binary(A324876(n)); \\ Needs also code from A324876.
%Y Cf. A000040, A000523, A070939, A156552, A324876, A324862, A324863, A324872.
%K nonn
%O 1,3
%A _Antti Karttunen_, Mar 21 2019