Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Mar 20 2019 04:25:55
%S 2,4,6,12,15,16,20,30,35,36,42,48,56,88,99,112,120,126,130,135,143,
%T 144,160,162,180,192,210,216,220,221,228,231,242,250,256,270,275,280,
%U 288,297,300,308,322,330,338,360,396,400,408,429,435,440,455,468,480,493
%N Numbers > 1 divisible by the sum of their prime indices.
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n). For example, the prime indices of 99 are {2,2,5}, with sum 9, a divisor of 99, so 99 is in the sequence.
%C For any k>=2, let d be a divisor of k such that d > A056239(k). Then 2^(d-A056239(k))*k is in the sequence. Similarly if k is in the sequence with d = A056239(k), then 2^d*k is in the sequence. - _Robert Israel_, Mar 19 2019
%H Robert Israel, <a href="/A324851/b324851.txt">Table of n, a(n) for n = 1..10000</a>
%e The sequence of terms together with their prime indices begins:
%e 2: {1}
%e 4: {1,1}
%e 6: {1,2}
%e 12: {1,1,2}
%e 15: {2,3}
%e 16: {1,1,1,1}
%e 20: {1,1,3}
%e 30: {1,2,3}
%e 35: {3,4}
%e 36: {1,1,2,2}
%e 42: {1,2,4}
%e 48: {1,1,1,1,2}
%e 56: {1,1,1,4}
%e 88: {1,1,1,5}
%e 99: {2,2,5}
%e 112: {1,1,1,1,4}
%e 120: {1,1,1,2,3}
%e 126: {1,2,2,4}
%e 130: {1,3,6}
%e 135: {2,2,2,3}
%p filter:= proc(n) local t; n mod add(numtheory:-pi(t[1])*t[2],t=ifactors(n)[2]) = 0 end proc:
%p select(filter, [$1..1000]); # _Robert Israel_, Mar 19 2019
%t Select[Range[2,100],Divisible[#,Plus@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]]&]
%o (PARI) isok(n) = {my(f = factor(n)); (n!=1) && !(n % sum(k=1, #f~, primepi(f[k,1])*f[k,2]));} \\ _Michel Marcus_, Mar 19 2019
%Y Cf. A003963, A036844, A056239, A112798, A120383, A290822, A306844.
%Y Cf. A324695, A324741, A324743, A324847, A324756, A324758, A324765, A324847, A324848, A324849, A324850, A324852.
%K nonn
%O 1,1
%A _Gus Wiseman_, Mar 18 2019