Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 19 2019 17:38:47
%S 2,4,6,8,10,12,14,15,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,45,
%T 46,48,50,52,54,55,56,58,60,62,64,66,68,70,72,74,75,76,78,80,82,84,86,
%U 88,90,92,94,96,98,100,102,104,105,106,108,110,112,114,116
%N Numbers divisible by at least one of their prime indices.
%C A prime index of n is a number m such that prime(m) divides n.
%C If n is in the sequence, then so are all multiples of n. - _Robert Israel_, Mar 19 2019
%H Robert Israel, <a href="/A324847/b324847.txt">Table of n, a(n) for n = 1..10000</a>
%e The sequence of terms together with their prime indices begins:
%e 2: {1}
%e 4: {1,1}
%e 6: {1,2}
%e 8: {1,1,1}
%e 10: {1,3}
%e 12: {1,1,2}
%e 14: {1,4}
%e 15: {2,3}
%e 16: {1,1,1,1}
%e 18: {1,2,2}
%e 20: {1,1,3}
%e 22: {1,5}
%e 24: {1,1,1,2}
%e 26: {1,6}
%e 28: {1,1,4}
%e 30: {1,2,3}
%e 32: {1,1,1,1,1}
%e 34: {1,7}
%e 36: {1,1,2,2}
%p filter:= proc(n) local F;
%p F:= map(numtheory:-pi, numtheory:-factorset(n));
%p ormap(t -> n mod t = 0, F);
%p end proc:
%p select(filter, [$1..200]); # _Robert Israel_, Mar 19 2019
%t Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>Divisible[#,PrimePi[p]]]&]
%o (PARI) isok(n) = {my(f = factor(n)[,1]); for (k=1, #f, if (!(n % primepi(f[k])), return (1));); return (0);} \\ _Michel Marcus_, Mar 19 2019
%Y Complement of A324846.
%Y Cf. A003963, A056239, A112798, A120383, A289509, A290822, A304360, A306844.
%Y Cf. A324695, A324741, A324743, A324847, A324756, A324758, A324765, A324848, A324849, A324850, A324852, A324853.
%K nonn
%O 1,1
%A _Gus Wiseman_, Mar 18 2019