%I #6 Mar 19 2019 07:15:01
%S 1,1,1,2,2,4,4,8,9,15,17,31,35,57,70,111,136,213,265,405,517,763,987,
%T 1458,1893,2736,3611,5161,6836,9702
%N Number of unlabeled rooted trees with n nodes where the branches of any branch of any terminal subtree form a submultiset of the branches of the same subtree.
%C A subset of totally transitive rooted trees (A318185).
%e The a(1) = 1 through a(8) = 8 rooted trees:
%e o (o) (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
%e (o(o)) (oo(o)) (oo(oo)) (ooo(oo)) (ooo(ooo))
%e (ooo(o)) (oooo(o)) (oooo(oo))
%e (o(o)(o)) (oo(o)(o)) (ooooo(o))
%e (oo(o)(oo))
%e (ooo(o)(o))
%e (o(o)(o)(o))
%e (o(o)(o(o)))
%t submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
%t rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[submultQ[b,#],{b,#}]&];
%t Table[Length[rallt[n]],{n,10}]
%Y The Matula-Goebel numbers of these trees are given by A324842.
%Y Cf. A000081, A279861, A290689, A290822, A318185.
%Y Cf. A324704, A324736, A324748, A324753, A324847, A324848, A324854.
%K nonn,more
%O 1,4
%A _Gus Wiseman_, Mar 18 2019