Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 18 2019 08:16:02
%S 1,2,3,4,5,7,8,9,11,16,17,19,21,23,25,27,31,32,35,49,51,53,57,59,63,
%T 64,67,73,77,81,83,85,95,97,103,115,121,125,127,128,131,133,147,149,
%U 153,159,161,171,175,177,187,189,201,209,217,227,233,241,243,245
%N Matula-Goebel numbers of fully recursively anti-transitive rooted trees.
%C An unlabeled rooted tree is fully recursively anti-transitive if no proper terminal subtree of any terminal subtree is a branch of the larger subtree.
%e The sequence of fully recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
%e 1: o
%e 2: (o)
%e 3: ((o))
%e 4: (oo)
%e 5: (((o)))
%e 7: ((oo))
%e 8: (ooo)
%e 9: ((o)(o))
%e 11: ((((o))))
%e 16: (oooo)
%e 17: (((oo)))
%e 19: ((ooo))
%e 21: ((o)(oo))
%e 23: (((o)(o)))
%e 25: (((o))((o)))
%e 27: ((o)(o)(o))
%e 31: (((((o)))))
%e 32: (ooooo)
%e 35: (((o))(oo))
%e 49: ((oo)(oo))
%e 51: ((o)((oo)))
%e 53: ((oooo))
%e 57: ((o)(ooo))
%e 59: ((((oo))))
%e 63: ((o)(o)(oo))
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t fratQ[n_]:=And[Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={},And@@fratQ/@primeMS[n]];
%t Select[Range[100],fratQ]
%Y Cf. A000081, A007097, A290689, A303431, A304360, A306844, A316502, A318185, A318186.
%Y Cf. A324695, A324751, A324756, A324758, A324766, A324768, A324769.
%Y Cf. A324838, A324840, A324844.
%K nonn
%O 1,2
%A _Gus Wiseman_, Mar 17 2019