%I #7 Mar 11 2019 20:44:01
%S 0,1,1,2,1,1,3,1,2,1,4,1,1,1,4,5,1,1,3,1,1,6,1,2,1,1,5,1,7,1,1,2,3,1,
%T 1,7,8,1,1,2,3,5,6,1,1,9,1,2,1,4,1,1,7,8,1,10,1,2,3,1,2,1,1,1,9,10,11,
%U 1,1,1,4,5,6,7,1,9,1,1,12,1,2,3,4,5,6,1
%N Starting at n, a(n) is the minimum positive point visited, or zero if no positive points are visited, according to the following rules. On the k-th step (k=1,2,3,...) move a distance of k in the direction of zero. If the number landed on has been landed on before, move a distance of k away from zero instead.
%e For n=2, the points visited are 2,1,-1,-4,0. As 1 is the smaller of the two positive values, a(2) = 1.
%o (Python)
%o #Sequences A324660-A324692 generated by manipulating this trip function
%o #spots - positions in order with possible repetition
%o #flee - positions from which we move away from zero with possible repetition
%o #stuck - positions from which we move to a spot already visited with possible repetition
%o def trip(n):
%o stucklist = list()
%o spotsvisited = [n]
%o leavingspots = list()
%o turn = 0
%o forbidden = {n}
%o while n != 0:
%o turn += 1
%o sign = n // abs(n)
%o st = sign * turn
%o if n - st not in forbidden:
%o n = n - st
%o else:
%o leavingspots.append(n)
%o if n + st in forbidden:
%o stucklist.append(n)
%o n = n + st
%o spotsvisited.append(n)
%o forbidden.add(n)
%o return {'stuck':stucklist, 'spots':spotsvisited,
%o 'turns':turn, 'flee':leavingspots}
%o def minorzero(x):
%o if x:
%o return min(x)
%o return 0
%o #Actual sequence
%o def a(n):
%o d = trip(n)
%o return minorzero([i for i in d['spots'] if i > 0])
%Y Cf. A228474, A324660-A324692.
%K nonn
%O 0,4
%A _David Nacin_, Mar 10 2019