login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. C(x,y) = cos(y) / sqrt(1 - sin(x)^2 - sin(y)^2).
5

%I #40 Sep 14 2024 12:31:03

%S 1,1,0,5,2,0,61,28,16,0,1385,662,440,272,0,50521,24568,17176,12448,

%T 7936,0,2702765,1326122,949520,727232,546560,353792,0,199360981,

%U 98329108,71350336,56140288,44720896,34259968,22368256,0,19391512145,9596075582,7020926600,5610570992,4600173440,3742967552,2900372480,1903757312,0,2404879675441,1192744081648,877465887496,708137588128,590470281856,495154244608,408133590016,318605529088,209865342976,0

%N E.g.f. C(x,y) = cos(y) / sqrt(1 - sin(x)^2 - sin(y)^2).

%C Row reversal of triangle A324611.

%C Related identity: (1 + sin(z))/cos(z) = exp( Integral 1/cos(z) dz ).

%C Related identity: cos(x+y)*cos(x-y) = (1 - sin(x)^2 - sin(y)^2). - _Paul D. Hanna_, Sep 14 2024

%C Name changed Sep 14 2024; prior name was: E.g.f. C(x,y) = cosh( Integral C(x,y)*C(y,x) dx ), where C(y,x) = cosh( Integral C(x,y)*C(y,x) dy ).

%H Paul D. Hanna, <a href="/A324609/b324609.txt">Table of n, a(n) for n = 0..495 terms in rows 0..30 of this triangle in flattened form.</a>

%F E.g.f. Cx = C(x,y) and related functions Sx = S(x,y), Cy = C(y,x), and Sy = S(y,x) satisfy the following relations.

%F (1a) Cx = 1 + Integral Sx * Cx*Cy dx.

%F (1b) Sx = Integral Cx * Cx*Cy dx.

%F (1c) Cy = 1 + Integral Sy * Cx*Cy dy.

%F (1d) Sy = Integral Cy * Cx*Cy dy.

%F (2a) Cx^2 - Sx^2 = 1.

%F (2b) Cy^2 - Sy^2 = 1.

%F (3a) Cx = cosh( Integral Cx*Cy dx ).

%F (3b) Sx = sinh( Integral Cx*Cy dx ).

%F (3c) Cy = cosh( Integral Cx*Cy dy ).

%F (3d) Sy = sinh( Integral Cx*Cy dy ).

%F (4a) Cx + Sx = exp( Integral Cx*Cy dx ).

%F (4b) Cy + Sy = exp( Integral Cx*Cy dy ).

%F (5a) (Cx + Sx)*(Cy + Sy) = (1 + sin(x+y))/cos(x+y).

%F (5b) (Cx + Sx)*(Cy - Sy) = (1 + sin(x-y))/cos(x-y).

%F (6a) Cx*Cy + Sx*Sy = 1/cos(x+y).

%F (6b) Cx*Sy + Sx*Cy = tan(x+y).

%F (7a) Cx*Cy = ( 1/cos(x+y) + 1/cos(x-y) )/2.

%F (7b) Sx*Sy = ( 1/cos(x+y) - 1/cos(x-y) )/2.

%F (7c) Cx*Sy = ( tan(x+y) - tan(x-y) )/2.

%F (7d) Sx*Cy = ( tan(x+y) + tan(x-y) )/2.

%F (8a) Cx*Cy = cos(x)*cos(y) / (cos(x+y)*cos(x-y)).

%F (8b) Sx*Sy = sin(x)*sin(y) / (cos(x+y)*cos(x-y)).

%F (8c) Cx*Sy = cos(y)*sin(y) / (cos(x+y)*cos(x-y)).

%F (8d) Sx*Cy = sin(x)*cos(x) / (cos(x+y)*cos(x-y)).

%F (9a) Cx + Sx = sqrt( (1 + sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ).

%F (9b) Cy + Sy = sqrt( (1 + sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ).

%F (9c) Cx - Sx = sqrt( (1 - sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ).

%F (9d) Cy - Sy = sqrt( (1 - sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ).

%F Let E(x,y) = sqrt( (1 + sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ) then

%F (10a) E(x,y) = C(x,y) + S(x,y) where E(-x,y) = 1/E(x,y),

%F (10b) C(x,y) = (E(x,y) + E(-x,y))/2,

%F (10c) S(x,y) = (E(x,y) - E(-x,y))/2.

%F From _Paul D. Hanna_, Sep 14 2024: (Start) Explicitly,

%F (11a) Cx = cos(y) / sqrt(1 - sin(x)^2 - sin(y)^2).

%F (11b) Sx = sin(x) / sqrt(1 - sin(x)^2 - sin(y)^2).

%F (11c) Cy = cos(x) / sqrt(1 - sin(x)^2 - sin(y)^2).

%F (11d) Sy = sin(y) / sqrt(1 - sin(x)^2 - sin(y)^2).

%F (End)

%F PARTICULAR ARGUMENTS.

%F E.g.f. at y = 0: C(x,y=0) = 1/cos(x).

%F E.g.f. at y = x: C(x,y=x) = cos(x)/sqrt(cos(2*x)).

%F FORMULAS INVOLVING TERMS.

%F T(n,0) = A000364(n) for n >= 0, where A000364 is the secant numbers.

%F T(n,n-1) = A000182(n) for n >= 1, where A000182 is the tangent numbers.

%e E.g.f.: C(x,y) = 1 + (1*x^2/2!) + (5*x^4/4! + 2*x^2*y^2/(2!*2!)) + (61*x^6/6! + 28*x^4*y^2/(4!*2!) + 16*x^2*y^4/(2!*4!)) + (1385*x^8/8! + 662*x^6*y^2/(6!*2!) + 440*x^4*y^4/(4!*4!) + 272*x^2*y^6/(2!*6!)) + (50521*x^10/10! + 24568*x^8*y^2/(8!*2!) + 17176*x^6*y^4/(6!*4!) + 12448*x^4*y^6/(4!*6!) + 7936*x^2*y^8/(2!*8!)) + (2702765*x^12/12! + 1326122*x^10*y^2/(10!*2!) + 949520*x^8*y^4/(8!*4!) + 727232*x^6*y^6/(6!*6!) + 546560*x^4*y^8/(4!*8!) + 353792*x^2*y^10/(2!*10!)) + ...

%e such that C(x,y) = cosh( Integral C(x,y)*C(y,x) dx ).

%e Explicitly,

%e C(x,y) = ( sqrt( (1 + sin(x+y))/cos(x+y) * (1 + sin(x-y))/cos(x-y) ) + sqrt( (1 - sin(x+y))/cos(x+y) * (1 - sin(x-y))/cos(x-y) ) )/2.

%e This triangle of coefficients T(n,k) of x^(2*n-2*k)*y^(2*k)/((2*n-2*k)!*(2*k)!) in e.g.f. C(x,y) begins

%e 1;

%e 1, 0;

%e 5, 2, 0;

%e 61, 28, 16, 0;

%e 1385, 662, 440, 272, 0;

%e 50521, 24568, 17176, 12448, 7936, 0;

%e 2702765, 1326122, 949520, 727232, 546560, 353792, 0;

%e 199360981, 98329108, 71350336, 56140288, 44720896, 34259968, 22368256, 0;

%e 19391512145, 9596075582, 7020926600, 5610570992, 4600173440, 3742967552, 2900372480, 1903757312, 0;

%e 2404879675441, 1192744081648, 877465887496, 708137588128, 590470281856, 495154244608, 408133590016, 318605529088, 209865342976, 0; ...

%e RELATED SERIES.

%e C(y,x) = 1 + (1*y^2/2!) + (2*x^2*y^2/(2!*2!) + 5*y^4/4!) + (16*x^4*y^2/(4!*2!) + 28*x^2*y^4/(2!*4!) + 61*y^6/6!) + (272*x^6*y^2/(6!*2!) + 440*x^4*y^4/(4!*4!) + 662*x^2*y^6/(2!*6!) + 1385*y^8/8!) + (7936*x^8*y^2/(8!*2!) + 12448*x^6*y^4/(6!*4!) + 17176*x^4*y^6/(4!*6!) + 24568*x^2*y^8/(2!*8!) + 50521*y^10/10!) + (353792*x^10*y^2/(10!*2!) + 546560*x^8*y^4/(8!*4!) + 727232*x^6*y^6/(6!*6!) + 949520*x^4*y^8/(4!*8!) + 1326122*x^2*y^10/(2!*10!) + 2702765*y^12/12!) + ...

%e such that C(y,x) = cosh( Integral C(x,y)*C(y,x) dy ).

%e S(x,y) = x + (2*x^3/3! + 1*x*y^2/2!) + (16*x^5/5! + 8*x^3*y^2/(3!*2!) + 5*x*y^4/4!) + (272*x^7/7! + 136*x^5*y^2/(5!*2!) + 94*x^3*y^4/(3!*4!) + 61*x*y^6/6!) + (7936*x^9/9! + 3968*x^7*y^2/(7!*2!) + 2840*x^5*y^4/(5!*4!) + 2108*x^3*y^6/(3!*6!) + 1385*x*y^8/8!) + (353792*x^11/11! + 176896*x^9*y^2/(9!*2!) + 128704*x^7*y^4/(7!*4!) + 100096*x^5*y^6/(5!*6!) + 76474*x^3*y^8/(3!*8!) + 50521*x*y^10/10!) + (22368256*x^13/13! + 11184128*x^11*y^2/(11!*2!) + 8211200*x^9*y^4/(9!*4!) + 6531968*x^7*y^6/(7!*6!) + 5261120*x^5*y^8/(5!*8!) + 4079408*x^3*y^10/(3!*10!) + 2702765*x*y^12/12!) + ...

%e such that C(x,y)^2 - S(x,y)^2 = 1.

%e S(y,x) = y + (1*x^2*y/2! + 2*y^3/3!) + (5*x^4*y/4! + 8*x^2*y^3/(2!*3!) + 16*y^5/5!) + (61*x^6*y/6! + 94*x^4*y^3/(4!*3!) + 136*x^2*y^5/(2!*5!) + 272*y^7/7!) + (1385*x^8*y/8! + 2108*x^6*y^3/(6!*3!) + 2840*x^4*y^5/(4!*5!) + 3968*x^2*y^7/(2!*7!) + 7936*y^9/9!) + (50521*x^10*y/10! + 76474*x^8*y^3/(8!*3!) + 100096*x^6*y^5/(6!*5!) + 128704*x^4*y^7/(4!*7!) + 176896*x^2*y^9/(2!*9!) + 353792*y^11/11!) + (2702765*x^12*y/12! + 4079408*x^10*y^3/(10!*3!) + 5261120*x^8*y^5/(8!*5!) + 6531968*x^6*y^7/(6!*7!) + 8211200*x^4*y^9/(4!*9!) + 11184128*x^2*y^11/(2!*11!) + 22368256*y^13/13!) + ...

%e such that C(y,x)^2 - S(y,x)^2 = 1.

%o (PARI) {T(n,k) = my(Cx = 1 + x*O(x^(2*n)), Cy = 1 + y*O(y^(2*n)));

%o for(i=1,2*n,

%o Cx = cosh(intformal(Cx*Cy,x));

%o Cy = cosh(intformal(Cx*Cy,y)););

%o Sx = sinh(intformal(Cx*Cy,x));

%o Sy = sinh(intformal(Cx*Cy,y));

%o (2*n-2*k)!*(2*k)! * polcoeff(polcoeff(Cx,2*n-2*k,x),2*k,y)}

%o for(n=0,10,for(k=0,n, print1( T(n,k),", "));print(""))

%Y Cf. A324610 (S(x,y)), A324611 (C(y,x)), A324612 (S(y,x)).

%Y Cf. A000364 (T(n,0)), A000182 (T(n,n-1)).

%Y Cf. A322221 (variant).

%K nonn,tabl

%O 0,4

%A _Paul D. Hanna_, Mar 09 2019