Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 10 2021 16:36:34
%S 1,1,2,3,3,3,3,3,3,3,3,10,11,11,11,13,13,14,14,14,16,16,16,17,17,17,
%T 19,19,19,19,20,20,20,22,22,22,22,22,23,23,23,25,25,25,25,25,25,26,26,
%U 26,28,28,28,28,28,28,28,29,29,30,31,31,31,31,31,31,31,31
%N Number of 1's in binary expansion of A308092(n).
%C Conjecture: sequence is weakly increasing.
%H Robert Israel, <a href="/A324608/b324608.txt">Table of n, a(n) for n = 1..3000</a>
%F a(n) = A000120(A308092(n)).
%p S:= "110":
%p b("0"):= 0: b("1"):= 1:
%p A308092[1]:= 1: A308092[2]:= 2: t:= 3:
%p for n from 3 to 300 do
%p tp:= add(b(S[i])*2^(n-i),i=1..n);
%p A308092[n]:= tp - t;
%p t:= tp;
%p S:= cat(S,convert(A308092[n],binary));
%p od:
%p seq(convert(convert(A308092[n],base,2),`+`), n=1..300); # _Robert Israel_, Jun 12 2019
%t a[1]=1;a[2]=2;a[n_]:=a[n]=FromDigits[Flatten[IntegerDigits[#,2]&/@Table[a[k],{k,n-1}]][[;;n]],2]-Total@Table[a[m],{m,n-1}]
%t Count[#,1]&/@Table[IntegerDigits[a[l],2],{l,70}] (* _Giorgos Kalogeropoulos_, Mar 30 2021 *)
%o (Python)
%o def aupton(terms):
%o alst, bstr = [1, 1], "110"
%o for n in range(3, terms+1):
%o an = int(bstr[:n], 2) - int(bstr[:n-1], 2)
%o binan = bin(an)[2:]
%o alst, bstr = alst + [binan.count('1')], bstr + binan
%o return alst
%o print(aupton(68)) # _Michael S. Branicky_, Mar 30 2021
%Y Cf. A000120, A308092.
%K nonn,base
%O 1,3
%A _Peter Kagey_, Jun 10 2019