login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The x-coordinates of squares visited by knight moves on a spirally numbered board and moving to the lowest available unvisited square at each step.
2

%I #15 Sep 26 2019 11:03:13

%S 0,2,1,-1,1,0,-1,1,-1,0,2,1,3,2,0,2,3,1,-1,-2,0,-2,-3,-2,-1,-3,-2,-1,

%T 1,3,4,3,1,-1,-3,-4,-2,-3,-2,0,2,3,2,0,-2,-3,-4,-5,-3,-1,1,3,4,5,4,2,

%U 0,-2,-4,-5,-6,-4,-5,-3,-4,-2,-3,-4,-2,0,2,4,5,4,3

%N The x-coordinates of squares visited by knight moves on a spirally numbered board and moving to the lowest available unvisited square at each step.

%H Peter Kagey, <a href="/A324606/b324606.txt">Table of n, a(n) for n = 1..2016</a>

%H N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=RGQe8waGJ4w">The Trapped Knight</a>, Numberphile video (2019)

%H Visualization of walk using <a href="https://oeis.org/plot2a?name1=A324606&amp;name2=A324607&amp;shift=0&amp;radiop1=xy&amp;drawlines=true">Plot 2</a>. - _Peter Kagey_, Jul 15 2019

%F a(n) = A174344(A316667(n)).

%Y Cf. A174344, A316667.

%Y A324607 gives y-coordinates.

%K sign,fini,full,walk

%O 1,2

%A _Peter Kagey_, Jun 06 2019