login
Irregular triangle with the representative solutions of the Diophantine equation x^2 - 5 congruent to 0 modulo N(n), with N(n) = A089270(n), for n >= 1.
1

%I #11 Jul 13 2019 14:16:01

%S 0,0,4,7,9,10,11,18,6,25,13,28,15,40,8,51,26,35,17,54,20,59,19,70,10,

%T 85,45,56,21,88,48,73,23,108,12,127,40,105,68,81,55,96,25,130,30,149,

%U 27,154,14,177,76,123,95,110,29,180,48,161,65,146

%N Irregular triangle with the representative solutions of the Diophantine equation x^2 - 5 congruent to 0 modulo N(n), with N(n) = A089270(n), for n >= 1.

%C The length of row n is 1 for n = 1 and n = 2, and for n >= 3 it is 2^{r1 + r4} with the number r1 and r4 of distinct primes congruent to 1 and 4 modulo 5, respectively, in the prime number factorization of N(n). E.g., n = 29, N = 209 = 11*19, has r1 = 1 and r4 = 1, with four solutions.

%C For N(1) = 1 every integer solves this Diophantine equation, and the representative solution is 0.

%C For N(2) = 5 there is only one representative solution, namely 0.

%C For n >= 3 the solutions come in a nonnegative power of 2 pairs, each of the type (x1, x2) with x2 = N - x1.

%C See the link in A089270 to the W. Lang paper, section 3, and Table 7.

%e The irregular triangle T(n, k) begins (pairs (x, N - x) in brackets):

%e n, N \ k 1 2 3 4 ...

%e ----------------------------------

%e 1, 1: 0

%e 2, 5: 0

%e 3, 11: (4 7)

%e 4, 19: (9 10)

%e 5, 29: (11 18)

%e 6, 31: (6 25)

%e 7, 41: (13 28)

%e 8, 55: (15 40)

%e 9, 59: (8 51)

%e 10, 61: (26 35)

%e 11, 71: (17 54)

%e 12, 79: (20 59)

%e 13, 89: (19 70)

%e 14, 95: (10 85)

%e 15, 101: (45 56)

%e 16, 109: (21 88)

%e 17, 121: (48 73)

%e 18, 131: (23 108)

%e 19, 139: (12 127)

%e 20, 145: (40 105)

%e ....

%e 29, 209: (29 180) (48 161)

%e ...

%e 41, 319: (18 301) (40 279)

%e ...

%e 43, 341: (37 304) (161 180)

%e ...

%e 59, 451: (95 356) (136 315)

%Y Cf. A089270, A324598 (x^2 + x - 1 == 0 (mod N)).

%K nonn,tabf

%O 1,3

%A _Wolfdieter Lang_, Jul 08 2019