%I #11 Jul 13 2019 14:16:01
%S 0,0,4,7,9,10,11,18,6,25,13,28,15,40,8,51,26,35,17,54,20,59,19,70,10,
%T 85,45,56,21,88,48,73,23,108,12,127,40,105,68,81,55,96,25,130,30,149,
%U 27,154,14,177,76,123,95,110,29,180,48,161,65,146
%N Irregular triangle with the representative solutions of the Diophantine equation x^2 - 5 congruent to 0 modulo N(n), with N(n) = A089270(n), for n >= 1.
%C The length of row n is 1 for n = 1 and n = 2, and for n >= 3 it is 2^{r1 + r4} with the number r1 and r4 of distinct primes congruent to 1 and 4 modulo 5, respectively, in the prime number factorization of N(n). E.g., n = 29, N = 209 = 11*19, has r1 = 1 and r4 = 1, with four solutions.
%C For N(1) = 1 every integer solves this Diophantine equation, and the representative solution is 0.
%C For N(2) = 5 there is only one representative solution, namely 0.
%C For n >= 3 the solutions come in a nonnegative power of 2 pairs, each of the type (x1, x2) with x2 = N - x1.
%C See the link in A089270 to the W. Lang paper, section 3, and Table 7.
%e The irregular triangle T(n, k) begins (pairs (x, N - x) in brackets):
%e n, N \ k 1 2 3 4 ...
%e ----------------------------------
%e 1, 1: 0
%e 2, 5: 0
%e 3, 11: (4 7)
%e 4, 19: (9 10)
%e 5, 29: (11 18)
%e 6, 31: (6 25)
%e 7, 41: (13 28)
%e 8, 55: (15 40)
%e 9, 59: (8 51)
%e 10, 61: (26 35)
%e 11, 71: (17 54)
%e 12, 79: (20 59)
%e 13, 89: (19 70)
%e 14, 95: (10 85)
%e 15, 101: (45 56)
%e 16, 109: (21 88)
%e 17, 121: (48 73)
%e 18, 131: (23 108)
%e 19, 139: (12 127)
%e 20, 145: (40 105)
%e ....
%e 29, 209: (29 180) (48 161)
%e ...
%e 41, 319: (18 301) (40 279)
%e ...
%e 43, 341: (37 304) (161 180)
%e ...
%e 59, 451: (95 356) (136 315)
%Y Cf. A089270, A324598 (x^2 + x - 1 == 0 (mod N)).
%K nonn,tabf
%O 1,3
%A _Wolfdieter Lang_, Jul 08 2019