Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Apr 13 2019 09:02:14
%S 1,2,7,14,23,46,53,97,106,151,161,194,227,302,311,322,371,419,454,541,
%T 622,661,679,742,827,838,1009,1057,1082,1193,1219,1322,1358,1427,1589,
%U 1619,1654,1879,2018,2114,2143,2177,2231,2386,2437,2438,2741,2854,2933
%N Heinz numbers of integer partitions of n into distinct perfect squares (A033461).
%C The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C Also products of distinct elements of A011757.
%e The sequence of terms together with their prime indices begins:
%e 1: {}
%e 2: {1}
%e 7: {4}
%e 14: {1,4}
%e 23: {9}
%e 46: {1,9}
%e 53: {16}
%e 97: {25}
%e 106: {1,16}
%e 151: {36}
%e 161: {4,9}
%e 194: {1,25}
%e 227: {49}
%e 302: {1,36}
%e 311: {64}
%e 322: {1,4,9}
%e 371: {4,16}
%e 419: {81}
%e 454: {1,49}
%e 541: {100}
%t Select[Range[1000],And@@Cases[FactorInteger[#],{p_,k_}:>k==1&&IntegerQ[Sqrt[PrimePi[p]]]]&]
%Y Cf. A001156, A005117, A011757, A033461, A052335, A056239, A062457, A078135, A112798, A117144, A276078.
%Y Cf. A109298, A324524, A324525, A324571, A324572, A324588.
%K nonn
%O 1,2
%A _Gus Wiseman_, Mar 08 2019