Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 29 2019 19:08:00
%S 2,6,36,30,300,15000,1260,42000,2940,288120,21176820,18480,66555720,
%T 328703760,12298440,2232166860,360122920080,360360,103062960,
%U 22107004920,4215068938080,129290917072196880,3525159950945805332160,90107494796113466546674800,645822919595173320,72532204477502449680,1648012277067163992784800
%N a(n) = A002182(n) * A324581(n) = A002182(n) * A276086(A002182(n)).
%C Note that gcd(A002182(n), A324581(n)) = A324198(A002182(n)) = 1 for all n because each term of A002182 is a product of primorial numbers (A002110).
%C See also comments in A324382.
%H Antti Karttunen, <a href="/A324582/b324582.txt">Table of n, a(n) for n = 1..512</a>
%H Michael De Vlieger, <a href="/A324582/a324582.png">Small chart of first terms</a>.
%H Michael De Vlieger, <a href="/A324582/a324582_1.png">2400 x 3600 chart of first terms</a>.
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F a(n) = A002182(n) * A324581(n) = A002182(n) * A276086(A002182(n)).
%F a(n) = A324580(A002182(n)).
%t Block[{b = MixedRadix[Reverse@ Prime@ Range@ 20], s = DivisorSigma[0, Range[10^5]], t}, t = Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]; Array[#1 (Times @@ Power @@@ Transpose@ {Prime@ Range@ Length@ #2, Reverse@ #2}) & @@ {#, IntegerDigits[#, b]} &@ t[[#]] &, Length@ t]] (* _Michael De Vlieger_, Mar 18 2019 *)
%o (PARI)
%o \\ A002182 assumed to be precomputed
%o A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
%o A324582(n) = A002182(n)*A276086(A002182(n));
%Y Subsequence of A324577.
%Y Cf. A002110, A002182, A276086, A324198, A324382, A324580, A324581.
%K nonn
%O 1,1
%A _Antti Karttunen_, Mar 09 2019