Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Mar 09 2019 19:23:31
%S 2,6,36,30,120,300,3600,15000,210,672,1260,42000,2940,28224,88200,
%T 164640,288120,4609920,216090000,21176820,564715200,2310,11880,18480,
%U 4435200,19404000,66555720,44370480000,50820,1306800,2845920,63748608,5856903360,328703760,306790176000,12298440,7906140000,645668100,33746919360,15874550866944
%N a(n) = A025487(n) * A324576(n) = A025487(n) * A276086(A025487(n)).
%C Note that A324198(A025487(n)) = gcd(A025487(n), A324576(n)) = 1 for all n, because each term of A025487 is a product of primorials.
%H Antti Karttunen, <a href="/A324577/b324577.txt">Table of n, a(n) for n = 1..10001</a>
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F a(n) = A025487(n) * A324576(n) = A025487(n) * A276086(A025487(n)).
%F a(n) = A324580(A025487(n)).
%o (PARI)
%o A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
%o A324577(n) = A025487(n)*A276086(A025487(n));
%Y Cf. A025487, A276086, A324198, A324576, A324579, A324580.
%Y Cf. also A324582 (a subsequence).
%K nonn
%O 1,1
%A _Antti Karttunen_, Mar 09 2019