Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Dec 21 2022 22:05:38
%S 2,4,6,8,9,12,16,18,20,24,27,30,32,36,40,45,48,50,54,56,60,64,72,75,
%T 80,81,84,90,96,100,108,112,120,125,126,128,135,140,144,150,160,162,
%U 168,176,180,189,192,196,200,210,216,224,225,240,243,250,252,256
%N Numbers > 1 where the maximum prime index is less than or equal to the number of prime factors counted with multiplicity.
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C Also Heinz numbers of integer partitions with nonnegative rank (A064174). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H Matthieu Pluntz, <a href="/A324521/b324521.txt">Table of n, a(n) for n = 1..10929 (up to a(n) = 2^21)</a>
%F A061395(a(n)) <= A001222(a(n)).
%e The sequence of terms together with their prime indices begins:
%e 2: {1}
%e 4: {1,1}
%e 6: {1,2}
%e 8: {1,1,1}
%e 9: {2,2}
%e 12: {1,1,2}
%e 16: {1,1,1,1}
%e 18: {1,2,2}
%e 20: {1,1,3}
%e 24: {1,1,1,2}
%e 27: {2,2,2}
%e 30: {1,2,3}
%e 32: {1,1,1,1,1}
%e 36: {1,1,2,2}
%e 40: {1,1,1,3}
%e 45: {2,2,3}
%e 48: {1,1,1,1,2}
%p with(numtheory):
%p q:= n-> is(pi(max(factorset(n)))<=bigomega(n)):
%p select(q, [$2..300])[]; # _Alois P. Heinz_, Mar 07 2019
%t Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]<=PrimeOmega[#]&]
%o (PARI) isok(m) = (m>1) && (primepi(vecmax(factor(m)[, 1])) <= bigomega(m)); \\ _Michel Marcus_, Nov 14 2022
%o (Python)
%o from sympy import factorint, primepi
%o def ok(n):
%o f = factorint(n)
%o return primepi(max(f)) <= sum(f.values())
%o print([k for k in range(2, 257) if ok(k)]) # _Michael S. Branicky_, Nov 15 2022
%Y Cf. A001222, A003114, A056239, A061395, A064174, A106529, A112798, A256617.
%Y Cf. A324515, A324517, A324519, A324522, A324560, A324562.
%K nonn
%O 1,1
%A _Gus Wiseman_, Mar 06 2019